首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4980篇
  免费   197篇
  国内免费   48篇
测绘学   101篇
大气科学   406篇
地球物理   1252篇
地质学   1683篇
海洋学   469篇
天文学   778篇
综合类   18篇
自然地理   518篇
  2021年   68篇
  2020年   63篇
  2019年   70篇
  2018年   93篇
  2017年   83篇
  2016年   132篇
  2015年   134篇
  2014年   132篇
  2013年   237篇
  2012年   155篇
  2011年   242篇
  2010年   173篇
  2009年   256篇
  2008年   212篇
  2007年   199篇
  2006年   206篇
  2005年   179篇
  2004年   166篇
  2003年   150篇
  2002年   154篇
  2001年   78篇
  2000年   98篇
  1999年   83篇
  1998年   89篇
  1997年   64篇
  1996年   67篇
  1995年   87篇
  1994年   82篇
  1993年   65篇
  1992年   66篇
  1991年   53篇
  1990年   72篇
  1989年   62篇
  1988年   60篇
  1987年   64篇
  1986年   59篇
  1985年   70篇
  1984年   91篇
  1983年   70篇
  1982年   70篇
  1981年   58篇
  1980年   68篇
  1979年   57篇
  1978年   58篇
  1977年   42篇
  1976年   50篇
  1975年   54篇
  1974年   40篇
  1973年   54篇
  1972年   25篇
排序方式: 共有5225条查询结果,搜索用时 15 毫秒
121.
We measured monthly soil surface elevation change and determined its relationship to groundwater changes at a mangrove forest site along Shark River, Everglades National Park, Florida. We combined the use of an original design, surface elevation table with new rod-surface elevation tables to separately track changes in the mid zone (0–4 m), the shallow root zone (0–0.35 m), and the full sediment profile (0–6 m) in response to site hydrology (daily river stage and daily groundwater piezometric pressure). We calculated expansion and contraction for each of the four constituent soil zones (surface [accretion and erosion; above 0 m], shallow zone [0–0.35 m], middle zone [0.35–4 m], and bottom zone [4–6]) that comprise the entire soil column. Changes in groundwater pressure correlated strongly, with changes in soil elevation for the entire profile (Adjusted R2 = 0.90); this relationship was not proportional to the depth of the soil profile sampled. The change in thickness of the bottom soil zone accounted for the majority (R2 = 0.63) of the entire soil profile expansion and contraction. The influence of hydrology on specific soil zones and absolute elevation change must be considered when evaluating the effect of disturbances, sea level rise, and water management decisions on coastal wetland systems.  相似文献   
122.
Large-scale molecular simulation of proton accumulations were carried out on (i) (110) and (021) slabs immersed in aqueous solution and (ii) a series of model goethite nanoparticles of dimension 2 to 8 nm with systematically varying acicularity and (110)/(021) surface areas. In the slab systems, the (021) surface exhibits 15% more proton charge per unit area than the (110) surface. In the particulate systems, the acicular particles having the highest (110)/(021) ratio accumulate the most charge, opposite to the trend expected from the slab simulations, indicating that, at length scales on the order of 10 nm, the slab results are not a good indicator of the overall charging behavior of the particles. The primary reason for the discrepancy between the particulate systems and slab systems is the preferential accumulation of protons at acute (110)-(110) intersections. Charge accumulates preferentially in this region because excess proton charge at an asperity is more effectively solvated than at a flat interface.  相似文献   
123.
A bathymetric and magnetic survey of the California Seamount region (17°40′N × 124°00′W) shows that existing charts are in error. California Seamount is a peak extending to within 454 m (248 fathoms) of the surface. Its true location is 17°41′N × 124°01′W, 25 km southwest of the charted position. Near the old charted position there is an elongated feature which extends to within 1818 m (994 fathoms) of the surface. Both features are located on the Clarion Fracture Zone.  相似文献   
124.
Nearshore suspended sediment concentration along the muddy Surinam coast is highly variable; maximum values are many times greater than on other muddy coasts. Water samples taken at four field stations during various stages of the tide range in concentration from 15 to 3,700 mg/l near the surface and from 100 to 30,000 mg/l near the bottom. Highest overall concentrations and greatest variability in concentration occur in water over large banks of fluid mud (thixotropic gel) that extend 2–3 km offshore and 5–10 km along-shore. On both the intertidal and subaqueous portions of these mudbanks highest concentrations are found at low tide. Results provide evidence that an exchange between fluid mud and suspended sediment takes place during each tidal cycle.  相似文献   
125.
Peraluminous and metaluminous plutonic rocks of the Peninsular Ranges batholith near Borrego Springs in southern California were mylonitized in the large shear zone known as the eastern Peninsular Ranges mylonite zone (EPRMZ). Accompanying mylonitization in this portion of the EPRMZ was metamorphism at intermediate-low-pressure amphibolite-facies conditions. Deformation in the zone overlapped in time with Cretaceous intrusion of the batholith. In the San Ysidro Mountain — Pinyon Ridge area, four north-south trending zones of differing intensity of deformation have been defined; from east to west the degree and style of deformation gradually change from undeformed or weakly deformed rocks to strongly mylonitized rocks. Electron microprobe analysis shows that recrystallized hornblende, biotite, and plagioclase are variable in composition, probably reflecting a range of metamorphic conditions accompanying deformation. Comparison of mineral compositions with those from mafic schists of Vermont suggests conditions ranged from andalusite-staurolite through sillimanite-muscovite grades as defined for pelitic rocks. Stability of muscovite+quartz in mylonite assemblages and lack of remelting of granitic rocks indicate that temperature did not exceed about 650° C during mylonitization and lithostatic pressure did not exceed about 5 kbar. Over time, any given rock volume experienced a range of temperature, lithostatic pressure, and perhaps fluid pressure and differential stress. Mineral reactions in the zone involved hydration, requiring introduction of water. The possibility of large-scale migration of K and Fe is suggested by whole-rock chemical data. Brittle and ductile deformation features are closely associated in one part of the EPRMZ. The combined evidence suggests the presence of a pore fluid with fluid pressure close to lithostatic pressure. Short periods of low fluid pressure and possible high differential stress cannot be ruled out.  相似文献   
126.
We present molecular orbital/density functional theory (MO/DFT) calculations that predict a greater isotopic fractionation in redox reactions than in reactions involving ligand exchange. The predicted fractionation factors, reported as 1000·ln(56-54α), associated with equilibrium between Fe-organic and Fe-H2O species were <1.6‰ in vacuo and <1.2‰ in solution when the oxidation state of the system was held constant. These fractionation factors were significantly smaller than those predicted for equilibrium between different oxidation states of Fe, for which 1000·ln(56-54α) was >2.7‰ in vacuo and >2.2‰ in solution when the bound ligands were unchanged. The predicted 56Fe/54Fe ratio was greater in complexes containing Fe3+ and in complexes with shorter Fe-O bond lengths; both of these trends follow previous theoretical results. Our predictions also agree with previous experimental measurements that suggest that the largest biological fractionations will be associated with processes that change the oxidation state of Fe, and that identification of biologically controlled Fe isotope fractionation may be difficult when abiotic redox fractionations are present in the system. The models studied here also have important implications for future theoretical isotope calculations, because we have discovered the necessity of using vibrational frequencies instead of reduced masses when predicting reduced partition functions in aqueous-phase species.  相似文献   
127.
Olivine metagabbros from the Adirondacks usually contain both clear and spinel-clouded plagioclase, as well as garnet. The latter occurs primarily as the outer rim of coronas surrounding olivine and pyroxene, and less commonly as lamellae or isolated grains within plagioclase. The formation of garnet and metamorphic spinel is dependent upon the anorthite content of the plagioclase. Plagioclase more sodic than An38±2 does not exhibit spinel clouding, and garnet rarely occurs in contact with plagioclase more albitic than An36±4. As a result of these compositional controls, the distribution of spinel and garnet mimics and visually enhances original igneous zoning in plagioclase. Most features of the arrangement of clear (unclouded) plagioclase, including the shells or moats of clear plagioclase which frequently occur inside the garnet rims of coronas, can be explained on the basis of igneous zoning. The form and distribution of the clear zones may also be affected by the metamorphic reactions which have produced the coronas, and by redistribution of plagioclase in response to local volume changes during metamorphism.Authors listed alphabeticallyPublished by permission of the Director, New York State Museum, Journal Series Number 299  相似文献   
128.
The origins of the pre-Debby (2006) mesoscale convective system (MCS) and African easterly wave (AEW) and their precursors were traced back to the southwest Arabian Peninsula, Asir Mountains (AS), and Ethiopian Highlands (EH) in the vicinity of the ITCZ using satellite imagery, GFS analysis data and ARW model. The sources of the convective cloud clusters and vorticity perturbations were attributed to the cyclonic convergence of northeasterly Shamal wind and the Somali jet, especially when the Mediterranean High shifted toward east and the Indian Ocean high strengthened and its associated Somali jet penetrated farther to the north. The cyclonic vorticity perturbations were strengthened by the vorticity stretching associated with convective cloud clusters in the genesis region—southwest Arabian Peninsula. A conceptual model was proposed to explain the genesis of convective cloud clusters and cyclonic vorticity perturbations preceding the pre-Debby (2006) AEW–MCS system.  相似文献   
129.
A reaction network integrating abiotic and microbially mediated reactions has been developed to simulate biostimulation field experiments at a former Uranium Mill Tailings Remedial Action (UMTRA) site in Rifle, Colorado. The reaction network was calibrated using data from the 2002 field experiment, after which it was applied without additional calibration to field experiments performed in 2003 and 2007. The robustness of the model specification is significant in that (1) the 2003 biostimulation field experiment was performed with 3 times higher acetate concentrations than the previous biostimulation in the same field plot (i.e., the 2002 experiment), and (2) the 2007 field experiment was performed in a new unperturbed plot on the same site. The biogeochemical reactive transport simulations accounted for four terminal electron-accepting processes (TEAPs), two distinct functional microbial populations, two pools of bioavailable Fe(III) minerals (iron oxides and phyllosilicate iron), uranium aqueous and surface complexation, mineral precipitation and dissolution. The conceptual model for bioavailable iron reflects recent laboratory studies with sediments from the UMTRA site that demonstrated that the bulk (∼90%) of initial Fe(III) bioreduction is associated with phyllosilicate rather than oxide forms of iron. The uranium reaction network includes a U(VI) surface complexation model based on laboratory studies with Rifle site sediments and aqueous complexation reactions that include ternary complexes (e.g., calcium-uranyl-carbonate). The bioreduced U(IV), Fe(II), and sulfide components produced during the experiments are strongly associated with the solid phases and may play an important role in long-term uranium immobilization.  相似文献   
130.
It is envisaged that high-level nuclear waste (HLW) will be disposed of in underground repositories. Many proposed repository designs include steel waste canisters and bentonite backfill. Natural analogues and experimental data indicate that the montmorillonite component of the backfill could react with steel corrosion products to produce non-swelling Fe-rich phyllosilicates such as chamosite, berthierine, or Fe-rich smectite. In K-bearing systems, the alteration of montmorillonite to illite/glauconite could also be envisaged. If montmorillonite were altered to non-swelling minerals, the swelling capacity and self-healing properties of the bentonite backfill could be reduced, thereby diminishing backfill performance. The main aim of this paper was to investigate Fe-rich phyllosilicate mineral stability at the canister-backfill interface using thermodynamic modelling. Estimates of thermodynamic properties were made for Fe-rich clay minerals in order to construct approximate phase-relations for end-member/simplified mineral compositions in logarithmic activity space. Logarithmic activity diagrams (for the system Al2O3-FeO-Fe2O3-MgO-Na2O-SiO2-H2O) suggest that if pore waters are supersaturated with respect to magnetite in HLW repositories, Fe(II)-rich saponite is the most likely montmorillonite alteration product (if fO2(g) values are significantly lower than magnetite-hematite equilibrium). Therefore, the alteration of montmorillonite may not be detrimental to nuclear waste repositories that include Fe, as long as the swelling behaviour of the Fe-rich smectite produced is maintained. If fO2(g) exceeds magnetite-hematite equilibrium, and solutions are saturated with respect to magnetite in HLW repositories, berthierine is likely to be more stable than smectite minerals. The alteration of montmorillonite to berthierine could be detrimental to the performance of HLW repositories.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号