首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5814篇
  免费   221篇
  国内免费   48篇
测绘学   131篇
大气科学   472篇
地球物理   1422篇
地质学   1942篇
海洋学   576篇
天文学   941篇
综合类   18篇
自然地理   581篇
  2022年   29篇
  2021年   72篇
  2020年   71篇
  2019年   82篇
  2018年   102篇
  2017年   97篇
  2016年   155篇
  2015年   152篇
  2014年   158篇
  2013年   282篇
  2012年   176篇
  2011年   299篇
  2010年   200篇
  2009年   294篇
  2008年   247篇
  2007年   234篇
  2006年   248篇
  2005年   203篇
  2004年   196篇
  2003年   178篇
  2002年   186篇
  2001年   107篇
  2000年   122篇
  1999年   100篇
  1998年   102篇
  1997年   78篇
  1996年   80篇
  1995年   100篇
  1994年   96篇
  1993年   76篇
  1992年   74篇
  1991年   67篇
  1990年   82篇
  1989年   69篇
  1988年   72篇
  1987年   73篇
  1986年   65篇
  1985年   89篇
  1984年   108篇
  1983年   80篇
  1982年   79篇
  1981年   68篇
  1980年   71篇
  1979年   69篇
  1978年   62篇
  1977年   46篇
  1976年   55篇
  1975年   54篇
  1974年   44篇
  1973年   54篇
排序方式: 共有6083条查询结果,搜索用时 140 毫秒
881.
We present simulation results for the detection of ultra-high energy (UHE) cosmic ray (CR) and neutrino interactions in the Moon by radio-telescopes. We simulate the expected radio signal at Earth from such interactions, expanding on previous work to include interactions in the sub-regolith layer for single dish and multiple telescope systems. For previous experiments at Parkes, Goldstone (GLUE), and Kalyazin we recalculate the sensitivity to an isotropic flux of UHE neutrinos. We find the published sensitivity for the GLUE experiment to be too high (too optimistic) by an order of magnitude, and consequently the GLUE limit to be too low by an order of magnitude. Our predicted sensitivity for future experiments using the Australia Telescope Compact Array (ATCA) and the Australian SKA Pathfinder (ASKAP) indicate these instruments will be able to detect the more optimistic UHE neutrino flux predictions, while the square kilometre array (SKA) will also be sensitive to all bar one prediction of a diffuse ‘cosmogenic’, or ‘GZK’, neutrino flux.Outstanding theoretical uncertainties at both high-frequency and low-frequency limits currently prevent a reliable estimate of the sensitivity of the lunar Cherenkov technique for UHE cosmic ray (CR) astronomy. Here, we place limits on the effects of large-scale surface roughness on UHE CR detection, and find that when near-surface ‘formation-zone’ effects are ignored, the proposed SKA low-frequency aperture array could detect CR events above 56 EeV at a rate between 15 and 40 times that of the current Pierre Auger Observatory. Should further work indicate that formation-zone effects have little impact on UHE CR sensitivity, observations of the Moon with the SKA would allow directional analysis of UHE cosmic rays, and investigation of correlations with putative cosmic ray source populations, to be conducted with very high statistics.  相似文献   
882.
We present a parameter study of simulations of fragmentation regulated by gravity, magnetic fields, ambipolar diffusion, and nonlinear flows. The thin-sheet approximation is employed with periodic lateral boundary conditions, and the nonlinear flow field (“turbulence”) is allowed to freely decay. In agreement with previous results in the literature, our results show that the onset of runaway collapse (formation of the first star) in subcritical clouds is significantly accelerated by nonlinear flows in which a large-scale wave mode dominates the power spectrum. In addition, we find that a power spectrum with equal energy on all scales also accelerates collapse, but by a lesser amount. For a highly super-Alfvénic initial velocity field with most power on the largest scales, the collapse occurs promptly during the initial compression wave. However, for trans-Alfvénic perturbations, a subcritical magnetic field causes a rebound from the initial compression, and the system undergoes several oscillations before runaway collapse occurs. Models that undergo prompt collapse have highly supersonic infall motions at the core boundaries. Cores in magnetically subcritical models with trans-Alfvénic initial perturbations also pick up significant systematic speeds by inheriting motions associated with magnetically-driven oscillations. Core mass distributions are much broader than in models with small-amplitude initial perturbations, although the disturbed structure of cores that form due to nonlinear flows does not guarantee subsequent monolithic collapse. Our simulations also demonstrate that significant power (if present initially) can be maintained with negligible dissipation in large-scale compressive modes of a magnetic thin sheet, in the limit of perfect flux freezing.  相似文献   
883.
We describe a numerical algorithm based on Godunov methods for integrating the equations of compressible magnetohydrodynamics (MHD) in multidimensions. It combines a simple, dimensionally-unsplit integration method with the constrained transport (CT) discretization of the induction equation to enforce the divergence-free constraint. We present the results of a series of fully three-dimensional tests which indicate the method is second-order accurate for smooth solutions in all MHD wave families, and captures shocks, contact and rotational discontinuities well. However, it is also more diffusive than other more complex unsplit integrators combined with CT. Thus, the primary advantage of the method is its simplicity. It does not require a characteristic tracing step to construct interface values for the Riemann solver, it is straightforward to extend with additional physics, and it is suitable for use with nested and adaptive meshes. The method is implemented as one of two dimensionally unsplit MHD integrators in the Athena code, which is freely available for download from the web.  相似文献   
884.
We present MUSE, a software framework for combining existing computational tools for different astrophysical domains into a single multiphysics, multiscale application. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying an interface between each module and the framework that represents a balance between generality and computational efficiency. This approach allows scientists to use combinations of codes to solve highly coupled problems without the need to write new codes for other domains or significantly alter their existing codes. MUSE currently incorporates the domains of stellar dynamics, stellar evolution and stellar hydrodynamics for studying generalized stellar systems. We have now reached a “Noah’s Ark” milestone, with (at least) two available numerical solvers for each domain. MUSE can treat multiscale and multiphysics systems in which the time- and size-scales are well separated, like simulating the evolution of planetary systems, small stellar associations, dense stellar clusters, galaxies and galactic nuclei. In this paper we describe three examples calculated using MUSE: the merger of two galaxies, the merger of two evolving stars, and a hybrid N-body simulation. In addition, we demonstrate an implementation of MUSE on a distributed computer which may also include special-purpose hardware, such as GRAPEs or GPUs, to accelerate computations. The current MUSE code base is publicly available as open source at http://muse.li.  相似文献   
885.
Magma ascent, decompression-induced H2O exsolution and crystallization is now recognized as an important process in hydrous subduction zone magmas. During the course of such a process calculations suggest that the ascent rate of a degassing and crystallizing mafic magma will be greater than crystal settling velocities. Thus, any crystals formed as a consequence of volatile exsolution will remain suspended in the magma. If the magma erupts before the percentage of suspended crystals reaches the critical crystallinity value for mafic magma (~55 vol.%) it will produce the commonly observed crystal rich island arc basalt lava. If the magma reaches its critical crystallinity before it erupts then it will stall within the crust. Extension of compaction experiments on a 55 vol.% sand-Karo syrup suspension at different temperatures (and liquid viscosities) to the likely viscosities of interstitial andesitic to dacitic liquid within such a stalled magma suggest that small amounts (up to ~10%) can be expelled on a time scale of 1–10 years. The expelled liquid can create a new intermediate to silicic body of magma that is related to the original mafic magma via fractional crystallization. The short time scale for liquid expulsion indicate that decompression-induced H2O exsolution and crystallization can be an important mechanism for fractional crystallization. Based on this assumption a general model of decompression-induced crystallization and fractionation is proposed that explains many of the compositional, mineralogical and textural features of Aleutian (and other andesites).  相似文献   
886.
Analytical expressions for the variation in D La and D Yb with increasing liquid SiO2 for olivine, plagioclase, augite, hornblende, orthopyroxene, magnetite and ilmenite (Brophy in Contrib Mineral Petrol 2008, online first) have been combined with numerical models of hydrous partial melting, of mid-ocean ridge (MOR) cumulate gabbro melting, and fractional crystallization of slightly hydrous mid-ocean ridge basalt (MORB) magma to assess a melting versus fractionation origin for oceanic plagiogranite. For felsic magmas (>63 wt.% SiO2) the modeling predicts the following. MOR cumulate gabbro melting should yield constant or decreasing La and constant Yb abundances with increasing liquid SiO2. The overall abundances should be similar to those in associated mafic magmas. MORB fractional crystallization should yield steadily increasing La and Yb abundances with increasing SiO2 with overall abundances significantly higher than those in associated mafic magmas. Application to natural occurrences of oceanic plagiogranite indicate that both MOR cumulate gabbro melting and MORB fractionation are responsible. Application of the model results to Icelandic rhyolites strongly support a fractional crystallization rather than a crustal melting origin.  相似文献   
887.
James G. Gehling  Mary L. Droser   《Earth》2009,96(3):196-128
The Ediacaran Period takes its name from the fossils of the Ediacara biota, which represent the first appearance of large and diverse assemblages of organisms in the fossil record. Although the global record of these distinctive body fossils is now well known, a previously unrecognized megascopic organic record of textured organic surfaces (TOS) occurs in the Ediacara biota. However, TOS is also a feature over a wider range of paleoenvironmental settings, where body fossils are unknown, in Ediacaran siliciclastic successions that have been studied in Australia, Namibia and western North America.Paleoecological analysis of successive bedding planes of strata from the late Ediacaran Rawnsley Quartzite in the Flinders Ranges of South Australia, reveals that TOS represent the most common organic features in bedding-surface assemblages of the Ediacara biota. The TOS consist of preserved, patterned assemblages of textured organic mats, fibers and simple tubular body fossils. Complex Ediacara body fossils while striking for their distinctive body plans, and dominating some of the beds, are relatively minor components of combined overall surface area. Many elements of TOS have previously been miss-diagnosed as trace fossils, which are in practice limited to two or at most three morphotypes that indicate the presence of Bilateria. Although TOS represent a simpler grade of organismic construction than discrete and more complex Ediacara body fossils, they were preserved in a similar manner. Marked variability in all components of the biota between successive surfaces suggests that Ediacara ecologies fluctuated at short intervals despite an apparently consistent sedimentary regime.  相似文献   
888.
Exposure of the ca. 6 Ma Taitao ophiolite, Chile, located 50 km south of the Chile Triple Junction, allows detailed chemical and isotopic study of rocks that were recently extracted from the depleted mantle source of mid-ocean ridge basalts (DMM). Ultramafic and mafic rocks are examined for isotopic (Os, Sr, Nd, and O), and major and trace element compositions, including the highly siderophile elements (HSE). Taitao peridotites have compositions indicative of variable extents of partial melting and melt extraction. Low δ18O values for most whole rock samples suggest some open-system, high-temperature water–rock interaction, most likely during serpentinization, but relict olivine grains have δ18O values consistent with primary mantle values. Most of the peridotites analyzed for Nd–Sr isotopes have compositions consistent with estimates for the modern DMM, although several samples are characterized by 87Sr/86Sr and 143Nd/144Nd indicative of crustal contamination, most likely via interactions with seawater. The peridotites have initial 187Os/188Os ratios that range widely from 0.1168 to 0.1288 (γOs = −8.0 to +1.1), averaging 0.1239 (γOs = −2.4), which is comparable to the average for modern abyssal peridotites. A negative correlation between the Mg# of relict olivine grains and Os isotopic compositions of whole rock peridotites suggests that the Os isotopic compositions reflect primary mantle Re/Os fractionation produced by variable extents of partial melting at approximately 1.6 Ga. Recent re-melting at or near the spatially associated Chile Ridge further modified these rocks, and Re, and minor Pt and Pd were subsequently added back into some rocks by late-stage melt–rock or fluid–rock interactions.In contrast to the peridotites, approximately half of the mafic rocks examined have whole rock δ18O values within the range of mantle compositions, and their Nd and Sr isotopic compositions are all generally within the range of modern DMM. These rocks have initial 187Os/188Os ratios, calculated for 6 Ma, that range from 0.126 (γOs = −1) to as high as 0.561 (γOs = +342). The Os isotopic systematics of each of these rocks may reflect derivation from mixed lithologies that include the peridotites, but may also include pyroxenites with considerably more radiogenic Os than the peridotites. This observation supports the view that suprachondritic Os present in MORB derives from mixed mantle source lithologies, accounting for some of the worldwide dichotomy in 187Os/188Os between MORB and abyssal peridotites.The collective results of this study suggest that this >500 km3 block of the mantle underwent at least two stages of melting. The first stage occurred at 1.6 Ga, after which the block remained isolated and unmixed within the DMM. A final stage of melting recently occurred at or near the Chile Ridge, resulting in the production of at least some of the mafic rocks. Convective stirring of this mantle domain during a >1 Ga period was remarkably inefficient, at least with regard to Os isotopes.  相似文献   
889.
The kinetics of iodide (I) and molecular iodine (I2) oxidation by the manganese oxide mineral birnessite (δ-MnO2) was investigated over the pH range 4.5-6.25. I oxidation to iodate proceeded as a two-step reaction through an I2 intermediate. The rate of the reaction varied with both pH and birnessite concentration, with faster oxidation occurring at lower pH and higher birnessite concentration. The disappearance of I from solution was first order with respect to I concentration, pH, and birnessite concentration, such that −d[I]/dt = k[I][H+][MnO2], where k, the third order rate constant, is equal to 1.08 ± 0.06 × 107 M−2 h−1. The data are consistent with the formation of an inner sphere I surface complex as the first step of the reaction, and the adsorption of I exhibited significant pH dependence. Both I2, and to a lesser extent, sorbed to birnessite. The results indicate that iodine transport in mildly acidic groundwater systems may not be conservative. Because of the higher adsorption of the oxidized I species I2 and , as well as the biophilic nature of I2, redox transformations of iodine must be taken into account when predicting I transport in aquifers and watersheds.  相似文献   
890.
We have measured liquid Fe metal-liquid silicate partitioning (Di) of tellurium, selenium, and sulfur over a range of pressure, temperature, and oxygen fugacity (1-19 GPa, 2023-2693 K, fO2 −0.4 to −5.5 log units relative to the iron-wüstite buffer) to better assess the role of metallic melts in fractionating these elements during mantle melting and early Earth evolution. We find that metal-silicate partitioning of all three elements decreases with falling FeO activity in the silicate melt, and that the addition of 5-10 wt% S in the metal phase results in a 3-fold enhancement of both DTe and DSe. In general, Te, Se, and S all become more siderophile with increasing pressure, and less siderophile with increasing temperature, in agreement with previous work. In all sulfur-bearing experiments, DTe is greater than DSe or DS, with the latter two being similar over a range of P and T. Parameterized results are used to estimate metal-silicate partitioning at the base of a magma ocean which deepens as accretion progresses, with the equilibration temperature fixed at the peridotite liquidus. We show that during accretion, Te behaves like a highly siderophile element, with expected core/mantle partitioning of >105, in contrast to the observed core/mantle ratio of ∼100. Less extreme differences are observed for Se and S, which yielded core/mantle partitioning 100- to 10 times higher, respectively, than the observed value. Addition of ∼0.5 wt% of a meteorite component (H, EH or EL ordinary chondrite) is sufficient to raise mantle abundances to their current level and erase the original interelement fractionation of metal-silicate equilibrium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号