首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30452篇
  免费   647篇
  国内免费   257篇
测绘学   616篇
大气科学   2320篇
地球物理   6346篇
地质学   10588篇
海洋学   2544篇
天文学   6720篇
综合类   64篇
自然地理   2158篇
  2021年   218篇
  2020年   255篇
  2019年   277篇
  2018年   583篇
  2017年   542篇
  2016年   691篇
  2015年   561篇
  2014年   732篇
  2013年   1435篇
  2012年   871篇
  2011年   1235篇
  2010年   1036篇
  2009年   1450篇
  2008年   1249篇
  2007年   1240篇
  2006年   1176篇
  2005年   986篇
  2004年   988篇
  2003年   927篇
  2002年   879篇
  2001年   754篇
  2000年   731篇
  1999年   647篇
  1998年   652篇
  1997年   636篇
  1996年   500篇
  1995年   499篇
  1994年   451篇
  1993年   396篇
  1992年   367篇
  1991年   323篇
  1990年   368篇
  1989年   338篇
  1988年   288篇
  1987年   372篇
  1986年   306篇
  1985年   405篇
  1984年   468篇
  1983年   435篇
  1982年   403篇
  1981年   367篇
  1980年   378篇
  1979年   336篇
  1978年   364篇
  1977年   303篇
  1976年   313篇
  1975年   323篇
  1974年   270篇
  1973年   288篇
  1972年   179篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
841.
It has been assumed that because seagrasses dominate macrophyte biomass in many estuaries they also dominate primary production. We tested this assumption by developing three carbon budgets to examine the contribution of autotrophic components to the total ecosystem net primary production (TENPP) of Lower Laguna Madre, Texas. The first budget coupled average photosynthetic parameters with average daily irradiance to calculate daily production. The second budget used average photosynthetic parameters and hourly in situ irradiance to estimate productivity. The third budget integrated temperature-adjusted photosynthetic parameters (using Q10=2) and hourly in situ irradiance to estimate productivity. For each budget TENPP was calculated by integrating production from each autotroph based on the producers’ areal distribution within the entire Lower Laguna Madre. All budgets indicated that macroalgae account for 33–42% of TENPP and seagrasses consistently accounted for about 33–38%. The contribution by phytoplankton was consistently about 15–20%, and the contribution from the benthic microalgae varied between 8% and 36% of TENPP, although this may have been underestimated due to our exclusion of the within bed microphytobenthos component. The water column over the seagrass beds was net heterotrophic and consequently was a carbon sink consuming between 5% and 22% of TENPP, TENPP ranged between 5.41×1010 and 2.53×1011 g C yr−1, depending on which budget was used. The simplest, most idealized budget predicted the highest TENPP, while the more realistic budgets predicted lower values. Annual production rates estimated using the third budget forHalodule urightii andThalassia testudinum compare well with field data. Macroalgae and microalgae contribute 50–60% of TENPP, and seagrass may be more important as three-dimensional habitat (i.e., structure) than as a source of organic carbon to the water column in Lower Laguna Madre.  相似文献   
842.
Landslide risk assessment and management: an overview   总被引:29,自引:0,他引:29  
Landslides can result in enormous casualties and huge economic losses in mountainous regions. In order to mitigate landslide hazard effectively, new methodologies are required to develop a better understanding of landslide hazard and to make rational decisions on the allocation of funds for management of landslide risk. Recent advances in risk analysis and risk assessment are beginning to provide systematic and rigorous processes to enhance slope management. In recent years, risk analysis and assessment has become an important tool in addressing uncertainty inherent in landslide hazards.This article reviews recent advances in landslide risk assessment and management, and discusses the applicability of a variety of approaches to assessing landslide risk. Firstly, a framework for landslide risk assessment and management by which landslide risk can be reduced is proposed. This is followed by a critical review of the current state of research on assessing the probability of landsliding, runout behavior, and vulnerability. Effective management strategies for reducing economic and social losses due to landslides are described. Problems in landslide risk assessment and management are also examined.  相似文献   
843.
A new and accurate characterization method for dimensions, shape and roughness of aggregate particles has been developed. The method is based on the 3D-laser scanning technique and evaluation of coarse-grain aggregate-particle images. Parameters are obtained with either analytical Fourier analysis or geometrical analysis. The results from the two methods are compared with each other as well as with manual measurements. Although the Fourier-based analysis gives about 10% smaller size values, the comparison of the results shows, in general, a good agreement between the different techniques. This new method for analysis of coarse-grain aggregates gives reliable results for both the shape and topographical parameters of particles.  相似文献   
844.
The Adam-Gibbs equations describing relaxation in silicate melts are applied to diffusion of trace components of multicomponent liquids. The Adam-Gibbs theory is used as a starting point to derive an explicit relation between viscosity and diffusion including non-Arrhenian temperature dependence. The general form of the equation is Diη = Aiexp{Δ(scEi)/TSc}, where D is diffusivity, η is melt viscosity, T is absolute temperature, Δ(scEi) is the difference between the products of activation energies and local configurational entropies for viscous and diffusive relaxation, Ai is a constant that depends on the characteristics of the diffusing solute particles, and Sc is configurational entropy of the melt. The general equation will be impractical for most predictive purposes due to the paucity of configurational entropy data for silicate melts. Under most magmatic conditions the proposed non-Arrhenian behaviour can be neglected, allowing the general equation to be simplified to a generalized form of the Eyring equation to describe diffusion of solutes that interact weakly with the melt structure: Diη/T = Qiexp{ΔEi/RT}, where Qi and ΔEi depend on the characteristics of the solute and the melt structure. If the diffusing solute interacts strongly with the melt structure or is a network-forming cation itself, then ΔEi = 0, and the relation between viscosity and diffusion has the functional form of the classic Eyring and Stokes-Einstein equations; Diη/T = Qi. If the diffusing solute can make diffusive jumps without requiring cooperative rearrangement of the melt structure, the diffusivity is entirely decoupled from melt viscosity and should be Arrhenian, i.e., Di = Qiexp{Bi/T}. A dataset of 594 published diffusivities in melts ranging from the system CAS through diopside, basalt, andesite, anhydrous rhyolite, hydrous rhyolite, and peralkaline rhyolite to albite, orthoclase, and jadeite is compared with the model equations. Alkali diffusion is completely decoupled from melt viscosity but is related to melt structure. Network-modifying cations with field strength Zi2/r between 1 and 10 interact weakly with the melt network and can be modelled with the extended form of the Eyring equation. Diffusivities of cations with high field strength have activation energies essentially equal to that of viscous flow and can be modelled with a simple reciprocal Eyring-type dependence on viscosity. The values of Qi, ΔEi and Bi for each cation are different and can be related to the cation charge and radius as well as the composition of the melt through the parameters Zi2/r, M/O, and Al/(Na + K + H). I present empirical fit parameters to the model equations that permit prediction of cation diffusivities given only charge and radius of the cation and temperature, composition and viscosity of the melt, for the entire range of temperatures accessible to magmas near to or above their liquidus, for magmas ranging in composition from basalt through andesite to hydrous or anhydrous rhyolite. Pressure effects are implicitly accounted for by corrections to melt viscosity. Ninety percent of diffusivities predicted by the models are within 0.6 log units of the measured values.  相似文献   
845.
846.
Several potential dust sources, including generic sources of sparsely vegetated alluvium, playa deposits, and anthropogenic emissions, as well as the area around Owens Lake, California, affect the composition of modern dust in the southwestern United States. A comparison of geochemical analyses of modern and old (a few thousand years) dust with samples of potential local sources suggests that dusts reflect four primary sources: (1) alluvial sediments (represented by Hf, K, Rb, Zr, and rare-earth elements, (2) playas, most of which produce calcareous dust (Sr, associated with Ca), (3) the area of Owens (dry) Lake, a human-induced playa (As, Ba, Li, Pb, Sb, and Sr), and (4) anthropogenic and/or volcanic emissions (As, Cr, Ni, and Sb). A comparison of dust and source samples with previous analyses shows that Owens (dry) Lake and mining wastes from the adjacent Cerro Gordo mining district are the primary sources of As, Ba, Li, and Pb in dusts from Owens Valley. Decreases in dust contents of As, Ba, and Sb with distance from Owens Valley suggest that dust from southern Owens Valley is being transported at least 400 km to the east. Samples of old dust that accumulated before European settlement are distinctly lower in As, Ba, and Sb abundances relative to modern dust, likely due to modern transport of dust from Owens Valley. Thus, southern Owens Valley appears to be an important, geochemically distinct, point source for regional dust in the southwestern United States.  相似文献   
847.
The fossilised soft tissues of a tadpole and an associated coprolitic structure from the organic-rich volcanoclastic lacustrine Upper Oligocene Enspel sediments (Germany) were investigated using high-resolution imaging techniques and nondestructive in situ surface analysis. Total organic carbon analysis of the coprolite and the sediment revealed values of 28.9 and 8.9% respectively. The soft tissues from the tadpole and the coprolite were found to be composed of 0.5 to 1 μm-sized spheres and rod shapes. These features are interpreted as the fossil remains of bacterial biofilms consisting probably of heterotrophic bacteria and fossilised extracellular polymeric substances. They became fossilised while in the process of degrading the organic matter of the organism and the coprolite. Comparison with a modern marine biofilm revealed morphologic details identical to those observed in the fossil bacterial biofilms. Although the fossil biofilms on both macrofossils exhibited identical microtextures, their mode of preservation was inhomogeneous and varied between calcium phosphate and an as yet unidentified mineral phase consisting mainly of Si, Ca, Ti, P, and S, but also showing the presence of Mg, Al, and Fe. The coprolite consists purely of fossilised bacterial cells in a densely packed arrangement and associated fossilised extracellular polymeric substances.In addition to preliminary imaging and energy-dispersive X-ray analysis, both the fossil biofilms and the sediment were investigated by nondestructive in situ analysis using time of flight-secondary ion mass spectroscopy (ToF-SIMS). The mass spectra obtained on the coprolite in mass-resolved chemical mapping mode allowed the tentative identification of a number of organic secondary ion species. Some spectra appear to indicate the presence of bacterial hopanoids, but further work using standard techniques such as gas chromatography mass spectroscopy is needed to conclusively verify the presence of these substances. Nevertheless, ToF-SIMS chemical maps were successfully correlated with electron microscopy images, allowing the correlation of molecular spectra, the spatial distribution of individual organic species, and specific morphologic features to demonstrate the potential of this approach in the analysis of microfossils.  相似文献   
848.
The oxygen fugacity of the Dar al Gani 476 martian basalt is determined to be quartz-fayalite-magnetite (QFM) −2.3 ± 0.4 through analysis of olivine, low-Ca pyroxene, and Cr-spinel and is in good agreement with revised results from Fe-Ti oxides that yield QFM −2.5 ± 0.7. This estimate falls within the range of oxygen fugacity for the other martian basalts, QFM −3 to QFM −1. Oxygen fugacity in martian basalts correlates with 87Sr/86Sr, 143Nd/144Nd, and La/Yb ratios, indicating that the mantle source of the basalts is reduced and that assimilation of crust-like material controls the oxygen fugacity. This allows constraints to be placed on the oxidation state of the martian mantle and on the nature of assimilated crustal material. The assimilated material may be the product of early and extensive hydrothermal alteration of the martian crust, or it may be amphibole- or phlogopite-bearing basaltic rock within the crust. In either case, water may play a significant role in the oxidation of basaltic magmas on Mars, although it may be secondary to assimilation of ferric iron-rich material.  相似文献   
849.
Low-molecular-weight (LMW) aqueous organic acids were generated from six oil-prone source rocks under hydrous-pyrolysis conditions. Differences in total organic carbon-normalized acid generation are a function of the initial thermal maturity of the source rock and the oxygen content of the kerogen (OI). Carbon-isotope analyses were used to identify potential generation mechanisms and other chemical reactions that might influence the occurrence of LMW organic acids. The generated LMW acids display increasing 13C content as a function of decreasing molecular weight and increasing thermal maturity. The magnitudes of observed isotope fractionations are source-rock dependent. These data are consistent with δ13C values of organic acids presented in a field study of the San Joaquin Basin and likely reflect the contributions from alkyl-carbons and carboxyl-carbons with distinct δ13C values. The data do not support any particular organic acid generation mechanism. The isotopic trends observed as a function of molecular weight, thermal maturity, and rock type are not supported by either generation mechanisms or destructive decarboxylation. It is therefore proposed that organic acids experience isotopic fractionation during generation consistent with a primary kinetic isotope effect and subsequently undergo an exchange reaction between the carboxyl carbon and dissolved inorganic carbon that significantly influences the carbon isotope composition observed for the entire molecule. Although generation and decarboxylation may influence the δ13C values of organic acids, in the hydrous pyrolysis system described, the nondestructive, pH-dependent exchange of carboxyl carbon with inorganic carbon appears to be the most important reaction mechanism controlling the δ13C values of the organic acids.  相似文献   
850.
Adsorption, complexation, and dissolution reactions strongly influenced the transport of metal ions complexed with ethylenediaminetetraacetic acid (EDTA) in a predominantly quartz-sand aquifer during two tracer tests conducted under mildly reducing conditions at pH 5.8 to 6.1. In tracer test M89, EDTA complexes of zinc (Zn) and nickel (Ni), along with excess free EDTA, were injected such that the lower portion of the tracer cloud traveled through a region with adsorbed manganese (Mn) and the upper portion of the tracer cloud traveled through a region with adsorbed Zn. In tracer test S89, Ni- and Zn-EDTA complexes, along with excess EDTA complexed with calcium (Ca), were injected into a region with adsorbed Mn. The only discernable chemical reaction between Ni-EDTA and the sediments was a small degree of reversible adsorption leading to minor retardation. In the absence of adsorbed Zn, the injected Zn was displaced from EDTA complexes by iron(III) [Fe(III)] dissolved from the sediments. Displacement of Zn by Fe(III) on EDTA became increasingly thermodynamically favorable with decreasing total EDTA concentration. The reaction was slow compared to the time-scale of transport. Free EDTA rapidly dissolved aluminum (Al) from the sediments, which was subsequently displaced slowly by Fe. In the portion of tracer cloud M89 that traveled through the region contaminated with adsorbed Zn, little displacement of Zn complexed with EDTA was observed, and Al was rapidly displaced from EDTA by Zn desorbed from the sediments, in agreement with equilibrium calculations. In tracer test S89, desorption of Mn dominated over the more thermodynamically favorable dissolution of Al oxyhydroxides. Comparison with results from M89 suggests that dissolution of Al oxyhydroxides in coatings on these sediment grains by Ca-EDTA was rate-limited whereas that by free EDTA reached equilibrium on the time-scale of transport. Rates of desorption are much faster than rates of dissolution of Fe oxyhydroxides from sediment-grain surfaces and, therefore, adsorbed metal ions can strongly influence the speciation of ligands like EDTA in soils and sediments, especially over small temporal and spatial scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号