Oceanology - Based on benthic foraminifera from three sediment cores, the deep-water circulation near the Hunter Channel (Southwest Atlantic) in the Late Pleistocene and Holocene has been... 相似文献
Oceanology - Abstract—The paper studies carbon transformation and transfer processes in the crust and mantle. Sediments dragged into subduction zones are dewatered, broken down, and altered... 相似文献
The shore-zone sediments between Jeddah and Yanbu, west coast of Saudi Arabia, are composed mostly of skeletal carbonate sands. The nearshore sediments containing benthic foraminifera, algal fragments and molluscs are multimodal, the mean grain size varying between 0.76 and 2.35 ø. The beach sediments, except samples dominated by cerithid gastropods in some localities, are relatively finer than the nearshore sediments. Although the beaches to a great extent comprise sand-sized material, fine lime muds and coarse clastic gravels occur in certain areas. The dune sediments comprising mostly algal grains and ooids are very fine with 50 percent of the material in the 0.25–0.18 mm size grade. Except a general northward decrease in mean grain size, regional trends in the textural parameters of the sediments between Jeddah and Yanbu are not quite apparent. Lateral variations in the textural characteristics suggest a landward migration of the sediments in the shore zone under the influence of northerly and northwesterly winds. The carbon and oxygen (δ 13C + 4.80 to 4.84‰ PDB) (δ 13O − 0.04 to + 0.53‰ PDB) isotopic ratios of the lime muds occurring in certain shallow margins in the shore-zone, which are much higher than those of the green algae, indicate that the fine carbonates are at least in part inorganic in origin.
Like the shallow-water carbonates in tropical seas, aragonite and high Mg-calcite are the dominant carbonate minerals in the shore-zone sediments. There is a landward increase in aragonite contents caused by the landward migration of fine material from the nearshore. The dominant clay mineral in the nearshore sediments is kaolinite with subordinate swelling chlorite and little illite. Kaolinite is contributed by the coastal regions under the sub-tropical humid climate. Swelling chlorite is considered to have been formed in the nearshore by mechanical mixture of chlorite and montmorillonite derived from the metamorphic and igneous terrains of the Tertiary mountains bordering the coastal plain. 相似文献
Features of the equatorial electrojet are studied at Sao Luiz (2.6°S, 44.2°W, inclination −0.25°) in eastern Brazil and Sikasso
(11.3°N, 5.7°W, inclination 0.1°) in the western African sector. The stations are situated on either side of the lowest magnetic
field intensity in the region of rapid changes in the declination. The daily variations of ΔX at the two stations are almost similar with the peak around noon with maximum values during equinoxes and minimum values
during J-solstices. Daily variations of ΔY differ with the maximum deviation of about −35 nT around noon at Sao Luiz and much smaller value of about −10 nT around 14 h
LT for Sikasso. The direction of the H vector varies from 15°W of north at 08 h to more than 30°W of north at 17 h for Sao Luiz and from 14°E of north to 25°W of
north at 18 h for Sikasso. The plot of the deviations in ΔX and ΔY at different hours for the two stations shows the points along narrow ellipses with major axis aligned along 22°W of north
for Sao Luiz and along 3°W of north for Sikasso as compared to declination of 20°W for Sao Luiz and 6°W for Sikasso. The deviations
in ΔX at the two stations are fairly well correlated. 相似文献
A priori, the recorded relative sea-level changes during the Cretaceous must be the combined effect of tectono-eustasy, geoidal-eustasy and various crustal level changes. To this we must add the human factor of differences and errors in interpretations.A posteriori, it is claimed that geoidal-eustasy dominated during the Hauterivian, Barremian, Turonian, Santonian and Maastrichtian, that tectono-eustasy dominated during the Albian, Cenomanian, Campanian and at the Maastrichtian/Danian boundary, and that local influences of sea-floor spreading are identified from the Albian/Cenomanian boundary onwards. To this we must add the local differential crustal movements modulating the global and regional ocean level changes. Geoidal-eustasy is mainly expressed as a latitudinal differentiation of the sea-level with out-of-phase changes between the hemispheres or the both high latitude regions. Furthermore, sedimentological records seem to record short-period geoidal-eustatic cycles. 相似文献
Izvestiya, Atmospheric and Oceanic Physics - An updated numerical model of the propagation of a set of spectral harmonics of internal gravity waves (IGWs) in the inhomogeneous atmosphere from the... 相似文献
Experimental studies in the system Fe,Ni–olivine–carbonate–S (P = 6.3 GPa, T = 1050–1550°C, t = 40–60 h) aimed at modeling of the interaction of subducted carbonates and sulfur with rocks of the silicate mantle and at investigation of the likely mechanism of the formation of mantle sulfides were performed. It is shown that an association of olivine + orthopyroxene + magnesite + pyrite coexisting with a sulfur melt/fluid with dissolved Fe, Ni, and O is formed at T ≤ 1250°C. An association of low-Fe olivine, orthopyroxene, and magnesite and two immiscible melts of the carbonate and S–Fe–Ni–O compositions are formed at T ≥ 1350°C. It is shown that the reduced S-bearing fluids may transform silicates and carbonates, extract metals from the solid-phase matrix, and provide conditions for generation of sulfide melts. 相似文献