首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   3篇
  国内免费   10篇
测绘学   8篇
大气科学   21篇
地球物理   50篇
地质学   27篇
海洋学   55篇
天文学   4篇
综合类   4篇
自然地理   6篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   7篇
  2015年   4篇
  2014年   10篇
  2013年   26篇
  2012年   10篇
  2011年   13篇
  2010年   18篇
  2009年   8篇
  2008年   7篇
  2007年   10篇
  2006年   4篇
  2005年   8篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1999年   1篇
  1998年   4篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
111.
The drastic expansion of cities and the rapid economic growth in Korea have caused dramatic increases to demand from groundwater supplies for drinking, domestic, agricultural and industrial water usage. The Ministry of Construction and Transportation and the Korea Water Resources Corporation have constructed and operated the National Groundwater Monitoring Network (NGMN) throughout the country since 1995. The NGMN, an official project establishing a total of 320 groundwater monitoring stations, was completed in 2005. Each national groundwater monitoring station serves as a baseline and primary station to monitor long‐term general trends in water‐level fluctuations and in groundwater quality. The present NGMN and its monitoring capabilities were evaluated to enhance the efficiency of groundwater monitoring and to meet the new societal conditions. Based on reviews and evaluations, some suggestions and recommendations are made with regard to improvements of the national network, including the installation of rainfall gauges in groundwater monitoring stations, gathering groundwater data every hour instead of every 6 h as at present, involving major cations and anions in the regular and periodic chemical analyses, regular periodic analyses of collected groundwater data, and construction of 199 additional groundwater monitoring stations to supplement the existing groundwater monitoring network. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
112.
We examined the infiltration pattern of water in a regolith–bedrock profile consisting of two overburdens (OB1 and OB2), a buried rice paddy soil (PS), two texturally distinctive weathered materials (WM1 and WM2) and a fractured sedimentary rock (BR), using a Brilliant Blue FCF dye tracer. A black‐coloured coating in conducting fractures in WM1, WM2 and BR was analysed by X‐ray diffraction and scanning electron microscopy. The dye tracer penetrated to greater than 2 m depth in the profile. The macropore flow and saturated interflow were the major infiltration patterns in the profile. Macropore flow and saturated interflow were observed along fractures in WM1, WM2 and BR and at the dipping interfaces of PS–WM1, PS–WM2 and PS–BR respectively. Heterogeneous matrix flow occurred in upper overburden (OB1) and PS. Compared with OB1, the coarser textured OB2 acted as a physical barrier for vertical flow of water. The PS with low bulk density and many fine roots was another major conducting route of water in the profile. Manganese oxide and iron oxide were positively identified in the black coating material and had low crystallinity and high surface area, indicating their high reactivity with conducting contaminants. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
113.
The groutability depends on the properties of the grout, its injection processes, and on the mechanical properties of the soil formation. During the process of pouring cement‐based grouting into a porous medium, a variation with time occurs in the viscosity of grout suspension. In addition, the particle filtration phenomenon will limit the expansion of the grouted zone because cement particles are progressively stagnant within the soil matrix. In this paper, a closed‐form solution was derived by implementing the mass balance equations and the generalized phenomenological filtration law, which can be used to evaluate the deposition of cement‐based grout in the soil matrix. The closed‐form solution relevant to a particular spherical flow was modified by a step‐wise numerical calculation, considering the variable viscosity caused by a chemical reaction, and the decrease in porosity resulting from grout particle deposition in the soil pores. A series of pilot‐scale chamber injection tests was performed to verify that the developed step‐wise numerical calculation is able to evaluate the injectable volume of grout and the deposition of grout particles. The results of the chamber injection tests concurred well with that of the step‐wise numerical calculation. Based on the filtration phenomenon, a viable approach for estimating the groutability of cement‐based grout in a porous medium was also suggested, which might facilitate a new insight in the design of the grouting process. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
114.
Even since the first discovery of Poynting and Robertson, the radiation source has been treated as merely a point. Even in a very few studies where the size of the source has been taken into account, the treatment of the problem remained largely non-relativistic. In the present work, we address the issue of the finite size effects on the Poynting–Robertson effect in a fully relativistic manner for the first time. As a result, the emergence and the characteristic of the critical point/suspension orbit can be studied in a systematic and detailed manner.  相似文献   
115.
Many papers have shown that bioenergy and land-use are potentially important elements in a strategy to limit anthropogenic climate change. But, significant expansion of bioenergy production can have a large terrestrial footprint. In this paper, we test the implications for land use, the global energy system, emissions and mitigation costs of meeting a specific climate target, using a single fossil fuel and industrial sector policy instrument, but with five alternative bioenergy and land-use policy architectures. These scenarios are illustrative in nature, and designed to explore trade-offs. We find that the policies we examined have differing effects on the different segments of the economy. Comprehensive land policies can reduce land-use change emissions, increasing allowable emissions in the energy system, but have implications for the cost of food. Bioenergy penalties and constraints, on the other hand, have little effect on food prices, but result in less bioenergy and thus can increase mitigation costs and energy prices.  相似文献   
116.
117.
Abstract

Both principal component analysis (PCA) and principal factor analysis (PFA) were used to analyze an experimental multispectral data structure in terms of common and unique variance. Only the common variance of the multispectral data was associated with the principal factor, while higher‐order principal components were associated with both common and unique variance. The unique variance was found to represent small spectral variations within each cover type as well as noise vectors, and was most abundant in the lower‐order principal components. The lower‐order principal components can be useful in research designed to discriminate minor physical variations within features, and to highlight localized change when using multitemporal‐multispectral data. Conversely, PFA of the multispectral data provided an insight into a great potential for discriminating basic land‐cover types by excluding the unique variance which was related to the noise and minor spectral variations.  相似文献   
118.
This study examines how land-use change simulation outcomes can vary based on the way the simulation model is applied, attempting to support informed model choices and model applications. This is accomplished through a series of experiments using a hypothetical model that represents the basic logic of various cell-based dynamic land-use change modeling environments. In the experiments, consideration is given to the sensitivity of the simulation results with respect to the following four application specifications: (1) the spatial resolution, (2) the temporal resolution, (3) the probability distribution, and (4) the degree of the influence of stochastic factors, under multiple growth scenarios. The experiments show that all four factors, particularly the spatiotemporal resolution and the degree to which stochastic factors are involved, can generate substantial variation in the simulation model outcomes. It is also found that the magnitude of the variation can be affected by changes in regional growth rates and the level of fluctuation, which determine the demand for new development to be allocated over the simulation time horizon.  相似文献   
119.
This paper examines the soil loss spatial patterns in the Keiskamma catchment using the GIS-based Sediment Assessment Tool for Effective Erosion Control (SATEEC) to assess the soil erosion risk of the catchment. SATEEC estimates soil loss and sediment yield within river catchments using the Revised Universal Soil Loss Equation (RUSLE) and a spatially distributed sediment delivery ratio. Vegetation cover in protected areas has a significant effect in curtailing soil loss. The effect of rainfall was noted as two pronged, higher rainfall amounts received in the escarpment promote vegetation growth and vigour in the Amatole mountain range which in turn positively provides a protective cover to shield the soil from soil loss. The negative aspect of high rainfall is that it increases the rainfall erosivity. The Keiskamma catchment is predisposed to excessive rates of soil loss due to high soil erodibility, steep slopes, poor conservation practices and low vegetation cover. This soil erosion risk assessment shows that 35% of the catchment is prone to high to extremely high soil losses higher than 25 ton ha−1 year−1 whilst 65% still experience very low to moderate levels of soil loss of less than 25 ton ha−1 year−1. Object based classification highlighted the occurrence of enriched valley infill which flourishes in sediment laden ephemeral stream channels. This occurrence increases gully erosion due to overgrazing within ephemeral stream channels. Measures to curb further degradation in the catchment should thrive to strengthen the role of local institutions in controlling conservation practice.  相似文献   
120.
Military shooting range soils contaminated by heavy metals have been subjected to remediation efforts to alleviate the detrimental effects of exposure on humans and the surrounding environment. Waste materials can be used as cost-effective soil amendments to immobilize heavy metals in contaminated soils. In this study, naturally occurring lime-based waste materials including egg shells, oyster shells, and mussel shells were assessed for their effectiveness toward heavy metal immobilization in military shooting range soil in Korea. Soil was treated in batch leaching experiments with 0, 2.5, 5, 10, and 15% of each lime-based waste material. The results showed that the lime-based waste materials effectively reduced water-soluble Pb at an application rate of 2.5% by weight of the soil. Increase in soil pH from 6.6 to 8.0 was considered to be the main chemistry of Pb immobilization, which was supported by the formation of insoluble Pb species at high pH values as confirmed by the visual MINTEQ thermodynamic model. In contrary, water-soluble Cu was increased in the lime-based waste material-treated soils when compared to the untreated soil. This was likely attributed to the formation of soluble Cu?CDOC (dissolved organic carbon) complexes as all lime-based waste materials applied increased DOC contents in the soil. Therefore, care must be taken in selecting the appropriate amendment for immobilizing metals in shooting range soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号