首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1687篇
  免费   34篇
  国内免费   15篇
测绘学   36篇
大气科学   86篇
地球物理   372篇
地质学   769篇
海洋学   106篇
天文学   239篇
综合类   7篇
自然地理   121篇
  2021年   9篇
  2020年   7篇
  2019年   17篇
  2018年   33篇
  2017年   25篇
  2016年   40篇
  2015年   25篇
  2014年   43篇
  2013年   90篇
  2012年   50篇
  2011年   61篇
  2010年   62篇
  2009年   91篇
  2008年   80篇
  2007年   62篇
  2006年   76篇
  2005年   85篇
  2004年   74篇
  2003年   69篇
  2002年   63篇
  2001年   47篇
  2000年   38篇
  1999年   22篇
  1998年   23篇
  1997年   23篇
  1996年   31篇
  1995年   16篇
  1994年   15篇
  1993年   19篇
  1992年   14篇
  1991年   21篇
  1990年   24篇
  1989年   27篇
  1988年   14篇
  1987年   34篇
  1986年   16篇
  1985年   23篇
  1984年   32篇
  1983年   13篇
  1982年   19篇
  1981年   19篇
  1980年   20篇
  1979年   20篇
  1978年   16篇
  1977年   12篇
  1976年   8篇
  1975年   15篇
  1974年   20篇
  1970年   9篇
  1969年   7篇
排序方式: 共有1736条查询结果,搜索用时 0 毫秒
21.
22.
23.
Delayed Geochemical Hazard (DGH briefly) presents the whole process of a kind of serious ecological and environmental hazard caused by sudden reactivation and sharp release of long-term accumulated pollutant from stable species to active ones in soil or sediment system due to the change of physical-chemical conditions (such as temperature, pH, Eh, moisture, the concentrations of organic matters, etc.) or the decrease of environment capacity. The characteristics of DGH are discussed. The process of a typical DGH can be expressed as a nonlinear polynomial. The points where the derivative functions of the first and second orders of the polynomial reach zero, minimum and maximum are keys for risk assessment and harzard pridication.The process and mechanism of the hazard is due to the transform of pollutant among different species principally. The concepts of "total releasable content of pollutant", TRCP, and "total concentration of active specie", TCAS, are necessarily defined to describe the mechanism of DGH. The possibility of the temporal and spatial propagation is discussed. Case study shows that there exists a transform mechanism of "gradual release" and "chain reaction" among the species of the exchangeable and the bounds to carbonate, iron and manganese oxides and organic matter, thus causing the delayed geochemical hazard.  相似文献   
24.
25.
We have studied the influence of Ca-Tschermaks (Calcium Tschermaks or CaTs) content of clinopyroxene on the partitioning of trace elements between this phase and silicate melt at fixed temperature and pressure. Ion probe analyses of experiments carried out in the system Na2O–CaO–MgO–Al2O3–SiO2, at 0.1 MPa and 1218°C, produced crystal-melt partition coefficients (D) of 36 trace elements (Li, Cl, Sc, Ti, V, Cr, Fe, Co, Ge, Sr, Y, Zr, Nb, Mo, Ru, Rh, In, Sn, Sb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta and W), for clinopyroxene compositions between 10 and 32 mol% CaTs. Partition coefficients for 2+ to 5+ cations show, for each charge, a near parabolic dependence of log D on ionic radius of the substituting cation, for partitioning into both the M1 and M2 sites of clinopyroxene. Fitting the results to the elastic strain model of Blundy and Wood [Blundy, J.D., Wood, B.J., 1994. Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372, 452–454] we obtain results for the strain-free partition coefficients of theoretical cations (D0), with site radius r0, and for the site's Young's Modulus (E).

In agreement with earlier data our results show that increasing ivAl concentration in cpx is matched by increasing D, EM1, EM2 and D0 for tri-, tetra- and pentavalent cations. The degree of fractionation between chemically similar elements (i.e. Ta/Nb, Zr/Hf) also increases. In contrast, D values for mono-, di- and hexavalent cations decrease with increasing ivAl in the cpx. The large suite of trace elements used has allowed us to study the effects of cation charge on D0, r0 and E. We have found that D0 and r0 decrease with increasing cation charge, e.g. r0=0.66 Å for 4+ cations and 0.59 Å for 5+ cations substituting into M1. Values of EM1 and EM2 increase with cation charge as well as with increasing ivAl content. The increase in EM2 is linear and close to the trend set by Hazen and Finger [Hazen, R.M., Finger, L.W., 1979. Bulk modulus-volume relationship for cation–anion polyhedra. J. Geophys. Res. 84 (10) 6723–6728] for oxides. EM1 values are much higher and do not fit the trend predicted by the Hazen and Finger relationship.  相似文献   

26.
Several numerical experiments are conducted to examine the influence of mesoscale, bottom topography roughness on the inertial circulation of a wind-driven, mid-latitude ocean gyre. The ocean model is based on the quasi-geostrophic formulation, and is eddy-resolving as it features high vertical and horizontal resolutions (six layers and a 10 km grid). An antisymmetrical double-gyre wind stress curl forces the baroclinic modes and generates a strong surface jet. In the case of a flat bottom, inertia and inverse energy cascade force the barotropic mode, and the resulting circulation features strong, barotropic, inertial gyres. The sea-floor roughness inhibits the inertial circulation in the deep layers; the barotropic component of the flow is then forced by eddy-topography interactions, and its energy concentrates at the scales of the topography. As a result, the baroclinicity of the flow is intesified: the barotropic mode is reduced with regard to the baroclinic modes, and the bottom flow (constrained by the mesoscale sea-floor roughness) is decoupled from the surface flow (forced by the gyre-scale wind). Rectified, mesoscale bottom circulation induces an interfacial form stress at the thermocline, which enhances horizontal shear instability and opposes the eastward penetration of the jet. The mean jet is consequently shortened, but the instantaneous jet remains very turbulent, with meanders of large meridional extent. The sea-floor roughness modifies the energy pathways, and the eddies have an even more important role in the establishment of the mean circulation: below the thermocline, rectification processes are dominant, and eddies transfer energy toward permanent mesoscale circulations strongly correlated with topography, whereas above the thermocline mean flow and eddy generation are influenced by the mean bottom circulation through interfacial stress. The topography modifies the vorticity of the barotropic and highest baroclinic modes. Vorticity accumulates at the small topographic scales, and the vorticity content of the highest modes, which is very weak in the flat-bottom case, increases significantly. Few changes occur in surface-intensified modes. In the deep layers of the model, the inverse correlation between relative vorticity and topography at small scales ensures the homogenization of the potential vorticity, which mainly retains the largest scales of the bottom flow and the scale of β.  相似文献   
27.
28.
A new formulation is proposed for the electrical potential developed inside a horizontally‐layered half‐space for a direct current point‐source at the surface. The recursion formula for the kernel coefficient in the potential integral is simpler than the generally used two‐coefficient recursion. The numerical difficulties that may occur during the computation of the integrals and near the source axis are examined and solutions are proposed. The set of equations permits a stable and accurate computation of the tabular potential everywhere in the medium.  相似文献   
29.
30.
Volcán Citlaltépetl (Pico de Orizaba) with an elevation of 5,675 m is the highest volcano in North America. Its most recent catastrophic events involved the production of pyroclastic flows that erupted approximately 4,000, 8,500, and 13,000 years ago. The distribution of mapped deposits from these eruptions gives an approximate guide to the extent of products from potential future eruptions. Because the topography of this volcano is constantly changing computer simulations were made on the present topography using three computer algorithms: energy cone, FLOW2D, and FLOW3D. The Heim Coefficient (), used as a code parameter for frictional sliding in all our algorithms, is the ratio of the assumed drop in elevation (H) divided by the lateral extent of the mapped deposits (L). The viscosity parameter for the FLOW2D and FLOW3D codes was adjusted so that the paths of the flows mimicked those inferred from the mapped deposits. We modeled two categories of pyroclastic flows modeled for the level I and level II events. Level I pyroclastic flows correspond to small but more frequent block-and-ash flows that remain on the main cone. Level II flows correspond to more widespread flows from catastrophic eruptions with an approximate 4,000-year repose period. We developed hazard maps from simulations based on a National Imagery and Mapping Agency (NIMA) DTED-1 DEM with a 90 m grid and a vertical accuracy of ±30 m. Because realistic visualization is an important aid to understanding the risks related to volcanic hazards we present the DEM as modeled by FLOW3D. The model shows that the pyroclastic flows extend for much greater distances to the east of the volcano summit where the topographic relief is nearly 4,300 m. This study was used to plot hazard zones for pyroclastic flows in the official hazard map that was published recently.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号