首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   6篇
测绘学   1篇
地球物理   29篇
地质学   19篇
海洋学   4篇
天文学   2篇
综合类   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   5篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   9篇
  2010年   5篇
  2009年   7篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2002年   1篇
排序方式: 共有56条查询结果,搜索用时 0 毫秒
51.
Fragility curves (FCs) constitute an emerging tool for the seismic risk assessment of all elements at risk. They express the probability of a structure being damaged beyond a specific damage state for a given seismic input motion parameter, incorporating the most important sources of uncertainties, that is, seismic demand, capacity and definition of damage states. Nevertheless, the implementation of FCs in loss/risk assessments introduces other important sources of uncertainty, related to the usually limited knowledge about the elements at risk (e.g., inventory, typology). In this paper, within a Bayesian framework, it is developed a general methodology to combine into a single model (Bayesian combined model, BCM) the information provided by multiple FC models, weighting them according to their credibility/applicability, and independent past data. This combination enables to efficiently capture inter-model variability (IMV) and to propagate it into risk/loss assessments, allowing the treatment of a large spectrum of vulnerability-related uncertainties, usually neglected. As case study, FCs for shallow tunnels in alluvial deposits, when subjected to transversal seismic loading, are developed with two conventional procedures, based on a quasi-static numerical approach. Noteworthy, loss/risk assessments resulting from such conventional methods show significant unexpected differences. Conventional fragilities are then combined in a Bayesian framework, in which also probability values are treated as random variables, characterized by their probability density functions. The results show that BCM efficiently projects the whole variability of input models into risk/loss estimations. This demonstrates that BCM is a suitable framework to treat IMV in vulnerability assessments, in a straightforward and explicit manner.  相似文献   
52.

The progressive electrification of the building conditioning sector in recent years has greatly contributed to reducing greenhouse gas emissions by using renewable energy sources, particularly shallow geothermal energy. This energy can be exploited through open and closed shallow geothermal systems (SGS), and their performances greatly depend on the ground/groundwater temperature, which can be affected by both natural and anthropogenic phenomena. The present study proposes an approach to characterize aquifers affected by high SGS exploitation (not simulated in this work). Characterization of the potential hydro/thermogeological natural state is necessary to understand the regional flow and heat transport, and to identify local thermal anomalies. Passive microseismic and groundwater monitoring were used to assess the shape and thermal status of the aquifer; numerical modeling in both steady-state and transient conditions allowed understanding of the flow and heat transport patterns. Two significant thermal anomalies were detected in a fluvio-glacial aquifer in southern Switzerland, one created by river water exfiltration and one of anthropogenic nature. A favorable time lag of 110 days between river and groundwater temperature and an urban hot plume produced by underground structures were observed. These thermal anomalies greatly affect the local thermal status of the aquifer and consequently the design and efficiency of current and future SGS. Results show that the correct characterization of the natural thermo-hydrogeological status of an aquifer is a fundamental basis for determining the impact of boundary conditions and to provide initial conditions required to perform reliable local thermal sustainability assessments, especially where high SGS exploitation occurs.

  相似文献   
53.
The 2002–03 flank eruption of Etna was characterized by two months of explosive activity that produced copious ash fallout, constituting a major source of hazard and damage over all eastern Sicily. Most of the tephra were erupted from vents at 2750 and 2800 m elevation on the S flank of the volcano, where different eruptive styles alternated. The dominant style of explosive activity consisted of discrete to pulsing magma jets mounted by wide ash plumes, which we refer to as ash-rich jets and plumes. Similarly, ash-rich explosive activity was also briefly observed during the 2001 flank eruption of Etna, but is otherwise fairly uncommon in the recent history of Etna. Here, we describe the features of the 2002–03 explosive activity and compare it with the 2001 eruption in order to characterize ash-rich jets and plumes and their transition with other eruptive styles, including Strombolian and ash explosions, mainly through chemical, componentry and morphology investigations of erupted ash. Past models explain the transition between different styles of basaltic explosive activity only in terms of flow conditions of gas and liquid. Our findings suggest that the abundant presence of a solid phase (microlites) may also control vent degassing and consequent magma fragmentation and eruptive style. In fact, in contrast with the Strombolian or Hawaiian microlite-poor, fluidal, sideromelane clasts, ash-rich jets and plumes produce crystal-rich tachylite clasts with evidence of brittle fragmentation, suggesting that high groundmass crystallinity of the very top part of the magma column may reduce bubble movement while increasing fragmentation efficiency.  相似文献   
54.
55.
Measurements collected during the Recognized Environmental Picture 2010 experiment (REP10) in the Ligurian Sea are used to evaluate 3-D super-ensemble (3DSE) 72-hour temperature predictions and their associated uncertainty. The 3DSE reduces the total Root-Mean-Square Difference by 12 and 32% respectively with reference to the ensemble mean and the most accurate of the models when comparing to regularly distributed surface temperature data. When validating against irregularly distributed in situ observations, the 3DSE, ensemble mean and most accurate model lead to similar scores. The 3DSE temperature uncertainty estimate is obtained from the product of a posteriori model weight error covariances by an operator containing model forecast values. This uncertainty prediction is evaluated using a criterion based on the 2.5th and 97.5th percentiles of the error distribution. The 3DSE error is found to be on average underestimated during the forecast period, reflecting (i) the influence of ocean dynamics and (ii) inaccuracies in the a priori weight error correlations. A calibration of the theoretical 3DSE uncertainty is proposed for the REP10 scenario, based on a time-evolving amplification coefficient applied to the a posteriori weight error covariance matrix. This calibration allows the end-user to be confident that, on average, the true ocean state lies in the −2/+2 3DSE uncertainty range in 95% of the cases.  相似文献   
56.
Multi‐offset phase analysis of seismic surface waves is an established technique for the extraction of dispersion curves with high spatial resolution and, consequently, for the investigation of the subsurface in terms of shear wave velocity distribution. However, field applications are rarely documented in the published literature. In this paper, we discuss an implementation of the multi‐offset phase analysis consisting of the estimation of the Rayleigh wave velocity by means of a moving window with a frequency‐dependent length. This allows maximizing the lateral resolution at high frequencies while warranting stability at the lower frequencies. In this way, we can retrieve the shallow lateral variability with high accuracy and, at the same time, obtain a robust surface‐wave velocity measurement at depth. In this paper, we apply this methodology to a dataset collected for hydrogeophysical purposes and compare the inversion results with those obtained by using refraction seismics and electrical resistivity tomography. The surface‐wave results are in good agreement with those provided by the other methods and demonstrate a superior capability in retrieving both lateral and vertical velocity variations, including inversions. Our results are further corroborated by the lithological information from a borehole drilled on the acquisition line. The availability of multi‐offset phase analysis data also allows disentangling a fairly complex interpretation of the other geophysical results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号