首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   16篇
  国内免费   1篇
测绘学   13篇
大气科学   65篇
地球物理   83篇
地质学   114篇
海洋学   18篇
天文学   43篇
综合类   2篇
自然地理   31篇
  2024年   1篇
  2023年   4篇
  2022年   1篇
  2021年   10篇
  2020年   7篇
  2019年   9篇
  2018年   13篇
  2017年   13篇
  2016年   22篇
  2015年   6篇
  2014年   20篇
  2013年   31篇
  2012年   14篇
  2011年   16篇
  2010年   17篇
  2009年   23篇
  2008年   12篇
  2007年   14篇
  2006年   12篇
  2005年   17篇
  2004年   13篇
  2003年   5篇
  2002年   2篇
  2001年   11篇
  2000年   8篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   5篇
  1992年   8篇
  1991年   5篇
  1990年   3篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   3篇
  1977年   4篇
  1975年   2篇
  1970年   1篇
  1969年   1篇
  1962年   1篇
排序方式: 共有369条查询结果,搜索用时 15 毫秒
291.
We used teleseismic recordings of a temporary deployment of seismic stations and of permanent short period stations in the western Eger Rift system to study the lithosphere with the help of Receiver Functions. The crust-mantle boundary (Moho) is observed at almost all stations by strong P-to-S converted phases. The Moho is basically flat between about 26 – 30 km depth in the entire region. At one station in the Eger Rift (BOH-1, Loket castle) no Moho is observed. We interpret this with the existence of a broad gradient zone there, instead of a sharp discontinuity. This observation, however, needs to be confirmed by more data.  相似文献   
292.
Riverine solute versus discharge (C–Q) relationships provide information about the magnitude and dynamics of material fluxes from landscapes. We analysed long‐term patterns of C–Q relationships for 44 rivers in Florida across a suite of geogenic, nutrient, and organic solutes and investigated land cover, watershed size, and surficial geology as controls on these patterns. Solute concentrations generally exhibited far less variability than did discharge, with coherent solute‐specific behaviours repeated across watersheds. Geogenic solutes generally diluted with increasing discharge, whereas organic solutes generally enriched; patterns for nutrients were highly variable across watersheds, but on average exhibited chemostasis. Despite strong evidence of both geologic and land cover controls on solute flow‐weighted concentrations, these variables were poor predictors of C–Q slopes (β) or relative coefficients of variation (CVC:CVQ). CVC:CVQ generally increased with watershed size, and wetland area appeared to influence C–Q patterns for base cations and organic solutes. Perhaps most importantly, we observed significant slope breaks in C–Q association in approximately half of our observations, challenging the generality of using single power functions to describe catchment solute export patterns. For all solutes except phosphorus (P), C–Q slopes decreased above statistically identified breaks (slopes for P increased), with breaks consistently at or near median flow (i.e., 50% flow exceedance probability). This common pattern significantly impacts solute load estimates; failing to account for slope breaks overestimates nitrate and total organic carbon loads as much as 125% and underestimates P loads as much as 35%. In addition to challenging generic power‐law characterization of C–Q relationships for these coastal plain rivers, and exploring the load estimate consequences thereof, our study supports emerging insights about watershed hydrochemical behaviours across a wide array of solutes.  相似文献   
293.
294.
Light nonaqueous phase liquids (LNAPLs) are a problematic challenge for obtaining site closure or no further action remediation sites. The source of the LNAPLs varies from leaking underground petroleum storage tanks, to manufacturing facilities where oil leaks create LNAPL accumulations beneath factory floors. Active recovery using pumping or periodic vacuum recovery from wells or sumps is used for remediation, but usually has disappointing results when LNAPL reaccumulates to thicknesses exceeding the 0.01-foot action level recognized by many states. This paper presents a simple passive approach for recovering persistent LNAPL using nonwoven hydrophobic oil absorbing cloth. The method used laboratory trials to assess physical properties of the cloth. Parameters observed and assessed included sorptive capacity and rate, buoyancy, and LNAPL wicking. It was determined that the cloth could be rolled and secured with cable ties for placement in the wells/sumps. Two placement designs were developed, one where rolled sorbent freely floated on the well/sump fluid surface and a second where the sorbent roll was placed in the fluid column at a fixed depth. Sorbents were then used at two manufacturing facilities where LNAPLs persisted for decades. In both instances, many wells/sumps were reduced to thicknesses below the action level in less than 2 months. In most wells, LNAPL did not reaccumulate. Where it did reaccumulate, it was less than 50% of the original thickness. Using laboratory-derived recovery rates, cloth sorbents could be sized to minimize placement/recovery frequency while effectively recovering LNAPL.  相似文献   
295.
296.
In the context of the EU-Project BALANCE () the regional climate model REMO was used for extensive calculations of the Barents Sea climate to investigate the vulnerability of this region to climate change. The regional climate model REMO simulated the climate change of the Barents Sea Region between 1961 and 2100 (Control and Climate Change run, CCC-Run). REMO on ~50 km horizontal resolution was driven by the transient ECHAM4/OPYC3 IPCC SRES B2 scenario. The output of the CCC-Run was applied to drive the dynamic vegetation model LPJ-GUESS. The results of the vegetation model were used to repeat the CCC-Run with dynamic vegetation fields. The feedback effect of the modified vegetation on the climate change signal is investigated and discussed with focus on precipitation, temperature and snow cover. The effect of the offline coupled vegetation feedback run is much lower than the greenhouse gas effect.  相似文献   
297.
Eight atmospheric regional climate models (RCMs) were run for the period September 1997 to October 1998 over the western Arctic Ocean. This period was coincident with the observational campaign of the Surface Heat Budget of the Arctic Ocean (SHEBA) project. The RCMs shared common domains, centred on the SHEBA observation camp, along with a common model horizontal resolution, but differed in their vertical structure and physical parameterizations. All RCMs used the same lateral and surface boundary conditions. Surface downwelling solar and terrestrial radiation, surface albedo, vertically integrated water vapour, liquid water path and cloud cover from each model are evaluated against the SHEBA observation data. Downwelling surface radiation, vertically integrated water vapour and liquid water path are reasonably well simulated at monthly and daily timescales in the model ensemble mean, but with considerable differences among individual models. Simulated surface albedos are relatively accurate in the winter season, but become increasingly inaccurate and variable in the melt season, thereby compromising the net surface radiation budget. Simulated cloud cover is more or less uncorrelated with observed values at the daily timescale. Even for monthly averages, many models do not reproduce the annual cycle correctly. The inter-model spread of simulated cloud-cover is very large, with no model appearing systematically superior. Analysis of the co-variability of terms controlling the surface radiation budget reveal some of the key processes requiring improved treatment in Arctic RCMs. Improvements in the parameterization of cloud amounts and surface albedo are most urgently needed to improve the overall performance of RCMs in the Arctic.  相似文献   
298.
Homogeneity, mass fractions of about forty trace elements and Sr isotope composition of Ca carbonate reference materials (RMs) between original and nano‐powdered pellets are compared. Our results using nanosecond and femtosecond LA‐(MC)‐ICP‐MS show that the nano‐pellets of the RMs MACS‐3NP, JCp‐1NP and JCt‐1NP are about a factor of 2–3 more homogeneous than the original samples MACS‐3, JCp‐1 and JCt‐1, and are therefore much more suitable for microanalytical purposes. With the exception of Si, the mass fractions of the synthetic RM MACS‐3 agree with its fine‐grained analogue MACS‐3NP. Very small, but significant, differences between original and nano‐pellets are observed in the RMs JCp‐1 and JCt‐1 for some trace elements with very low contents, indicating the need for re‐certification. Strontium mass fractions in the analysed RMs are high (1500–7000 mg kg?1), and their isotope compositions determined by LA‐MC‐ICP‐MS in the original and the nano‐pellets agree within uncertainty limits.  相似文献   
299.
In cases when an equivalent porous medium assumption is suitable for simulating groundwater flow in bedrock aquifers, estimation of seepage into underground mine workings (UMWs) can be achieved by specifying MODFLOW drain nodes at the contact between water bearing rock and dewatered mine openings. However, this approach results in significant numerical problems when applied to simulate seepage into an extensive network of UMWs, which often exist at the mine sites. Numerical simulations conducted for individual UMWs, such as a vertical shaft or a horizontal drift, showed that accurate prediction of seepage rates can be achieved by either applying grid spacing that is much finer than the diameter/width of the simulated openings (explicit modeling) or using coarser grid with cell sizes exceeding the characteristic width of shafts or drifts by a factor of 3. Theoretical insight into this phenomenon is presented, based on the so-called well-index theory. It is demonstrated that applying this theory allows to minimize numerical errors associated with MODFLOW simulation of seepage into UMWs on a relatively coarse Cartesian grid. Presented examples include simulated steady-state groundwater flow from homogeneous, heterogeneous, and/or anisotropic rock into a vertical shaft, a horizontal drift/cross-cut, a ramp, two parallel drifts, and a combined system of a vertical shaft connected to a horizontal drift.  相似文献   
300.
A glacier parameterization scheme has been developed and implemented into the regional climate model REMO. The new scheme interactively simulates the mass balance as well as changes of the areal extent of glaciers on a subgrid scale. The temporal evolution and the general magnitude of the simulated glacier mass balance in the European Alps are in good accordance with observations for the period 1958–1980, but the strong mass loss towards the end of the twentieth century is systematically underestimated. The simulated decrease of glacier area in the Alps between 1958 and 2003 ranges from −17.1 to −23.6%. The results indicate that observed glacier mass balances can be approximately reproduced within a regional climate model based on simplified concepts of glacier-climate interaction. However, realistic results can only be achieved by explicitly accounting for the subgrid variability of atmospheric parameters within a climate model grid box.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号