首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   395篇
  免费   16篇
  国内免费   2篇
测绘学   6篇
大气科学   27篇
地球物理   128篇
地质学   113篇
海洋学   25篇
天文学   85篇
综合类   1篇
自然地理   28篇
  2022年   5篇
  2021年   4篇
  2020年   10篇
  2019年   7篇
  2018年   11篇
  2017年   7篇
  2016年   10篇
  2015年   11篇
  2014年   7篇
  2013年   14篇
  2012年   14篇
  2011年   6篇
  2010年   17篇
  2009年   14篇
  2008年   16篇
  2007年   18篇
  2006年   9篇
  2005年   12篇
  2004年   4篇
  2003年   12篇
  2002年   6篇
  2001年   6篇
  2000年   8篇
  1999年   5篇
  1998年   4篇
  1997年   6篇
  1996年   3篇
  1995年   8篇
  1994年   12篇
  1993年   9篇
  1992年   4篇
  1991年   7篇
  1990年   6篇
  1989年   4篇
  1987年   6篇
  1986年   7篇
  1985年   13篇
  1984年   7篇
  1983年   5篇
  1982年   9篇
  1981年   9篇
  1980年   3篇
  1979年   8篇
  1978年   6篇
  1977年   8篇
  1976年   6篇
  1975年   4篇
  1973年   6篇
  1971年   5篇
  1969年   4篇
排序方式: 共有413条查询结果,搜索用时 140 毫秒
151.
A key question in volcanology is the driving mechanisms of resurgence at active, recently active, and ancient calderas. Valles caldera in New Mexico and Lake City caldera in Colorado are well-studied resurgent structures which provide three crucial clues for understanding the resurgence process. (1) Within the limits of 40Ar/39Ar dating techniques, resurgence and hydrothermal alteration at both calderas occurred very quickly after the caldera-forming eruptions (tens of thousands of years or less). (2) Immediately before and during resurgence, dacite magma was intruded and/or erupted into each system; this magma is chemically distinct from rhyolite magma which was resident in each system. (3) At least 1?km of structural uplift occurred along regional and subsidence faults which were closely associated with shallow intrusions or lava domes of dacite magma. These observations demonstrate that resurgence at these two volcanoes is temporally linked to caldera subsidence, with the upward migration of dacite magma as the driver of resurgence. Recharge of dacite magma occurs as a response to loss of lithostatic load during the caldera-forming eruption. Flow of dacite into the shallow magmatic system is facilitated by regional fault systems which provide pathways for magma ascent. Once the dacite enters the system, it is able to heat, remobilize, and mingle with residual crystal-rich rhyolite remaining in the shallow magma chamber. Dacite and remobilized rhyolite rise buoyantly to form laccoliths by lifting the chamber roof and producing surface resurgent uplift. The resurgent deformation caused by magma ascent fractures the chamber roof, increasing its structural permeability and allowing both rhyolite and dacite magmas to intrude and/or erupt together. This sequence of events also promotes the development of magmatic–hydrothermal systems and ore deposits. Injection of dacite magma into the shallow rhyolite magma chamber provides a source of heat and magmatic volatiles, while resurgent deformation and fracturing increase the permeability of the system. These changes allow magmatic volatiles to rise and meteoric fluids to percolate downward, favouring the development of hydrothermal convection cells which are driven by hot magma. The end result is a vigorous hydrothermal system which is driven by magma recharge.  相似文献   
152.
Riparian areas are diverse systems where flooding creates new sites for establishment of vegetation. Symbioses with soil microorganisms, such as mycorrhizal fungi, affect vascular plant growth and community composition. It is unknown, however, how mycorrhizal fungi are dispersed along rivers and what potential they have to inoculate roots of plants establishing on recently deposited sedimentary surfaces of flood plains. We measured AMF inocula in sediment deposited by an average spring flood along an expansive riverine flood plain in Montana, USA, to determine whether AMF inocula were present in sediments and what types of propagules (spores, hyphae, or colonized root fragments) contribute to AMF infectivity. Flood-deposited sediments contained sufficient inocula for AMF to colonize host plants (Sorghum sudanense) grown in a greenhouse, and both AMF hyphal lengths and spore densities were correlated with infectivity. Availability of mycorrhizal inocula, which is patchily distributed in this system, may lead to microsites that differ in ability to support establishment and growth of early-successional plants.  相似文献   
153.
Settled particles of fresh, labile organic matter may be a significant source of oxygen demand and nutrient regeneration in seasonally-hypoxic regions caused by nutrient inputs into stratified coastal zones. Studying the dynamics of this material requires sediment sampling methods that include flocculent organic materials and overlying water (OLW) at or above the sediment–water interface (SWI). A new coring device (“HYPOX” corer) was evaluated for examining nitrogen- (N) and oxygen-dynamics at the SWI and OLW in the northern Gulf of Mexico (NGOMEX). The HYPOX corer consists of a “Coring Head” with a check-valve, a weighted “Drive Unit,” and a “Lander,” constructed from inexpensive components. The corer collected undisturbed sediment cores and OLW from sediments at NGOMEX sampling sites with underlying substrates ranging from sand to dense clay. The HYPOX corer could be deployed in weather conditions similar to those needed for a multi-bottle rosette water-sampling system with 20 L bottles. As an example of corer applicability to NGOMEX issues, NH4+ cycling rates were examined at hypoxic and control sites by isotope dilution experiments. The objective was to determine if N-dynamics in OLW were different from those in the water column. “Ammonium demand,” as reflected by potential NH4+ uptake rates, was higher in OLW than in waters collected from a meter or more above the bottom at both sites, but the pattern was more pronounced at the hypoxia site. By contrast, NH4+ regeneration rates were low in all samples. These preliminary results suggest that heterotrophic activity and oxygen consumption in OLW in the hypoxic region may be regulated by the availability of NH4+, or other reduced N compounds, rather than by the lack of sufficient labile organic carbon.  相似文献   
154.
Risk assessment of spatially distributed building portfolios or infrastructure systems requires quantification of the joint occurrence of ground‐motion intensities at several sites, during the same earthquake. The ground‐motion models that are used for site‐specific hazard analysis do not provide information on the spatial correlation between ground‐motion intensities, which is required for the joint prediction of intensities at multiple sites. Moreover, researchers who have previously computed these correlations using observed ground‐motion recordings differ in their estimates of spatial correlation. In this paper, ground motions observed during seven past earthquakes are used to estimate correlations between spatially distributed spectral accelerations at various spectral periods. Geostatistical tools are used to quantify and express the observed correlations in a standard format. The estimated correlation model is also compared with previously published results, and apparent discrepancies among the previous results are explained. The analysis shows that the spatial correlation reduces with increasing separation between the sites of interest. The rate of decay of correlation typically decreases with increasing spectral acceleration period. At periods longer than 2 s, the correlations were similar for all the earthquake ground motions considered. At shorter periods, however, the correlations were found to be related to the local‐site conditions (as indicated by site Vs30 values) at the ground‐motion recording stations. The research work also investigates the assumption of isotropy used in developing the spatial correlation models. It is seen using the Northridge and Chi‐Chi earthquake time histories that the isotropy assumption is reasonable at both long and short periods. Based on the factors identified as influencing the spatial correlation, a model is developed that can be used to select appropriate correlation estimates for use in practical risk assessment problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
155.
This study evaluates the effect of considering ground motion duration when selecting hazard‐consistent ground motions for structural collapse risk assessment. A procedure to compute source‐specific probability distributions of the durations of ground motions anticipated at a site, based on the generalized conditional intensity measure framework, is developed. Targets are computed for three sites in Western USA, located in distinct tectonic settings: Seattle, Eugene, and San Francisco. The effect of considering duration when estimating the collapse risk of a ductile reinforced concrete moment frame building, designed for a site in Seattle, is quantified by conducting multiple stripe analyses using groups of ground motions selected using different procedures. The mean annual frequency of collapse (λcollapse) in Seattle is found to be underestimated by 29% when using typical‐duration ground motions from the PEER NGA‐West2 database. The effect of duration is even more important in sites like Eugene (λcollapse underestimated by 59%), where the seismic hazard is dominated by large magnitude interface earthquakes, and less important in sites like San Francisco (λcollapse underestimated by 7%), where the seismic hazard is dominated by crustal earthquakes. Ground motion selection procedures that employ causal parameters like magnitude, distance, and Vs30 as surrogates for ground motion duration are also evaluated. These procedures are found to produce poor fits to the duration and response spectrum targets because of the limited number of records that satisfy typical constraints imposed on the ranges of the causal parameters. As a consequence, ground motions selected based on causal parameters are found to overestimate λcollapse by 53%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
156.
Jack Wisdom 《Icarus》2008,193(2):637-640
Expressions for tidal dissipation in a body in synchronous rotation at arbitrary orbital eccentricity and obliquity are derived. The rate of tidal dissipation for a synchronously rotating body is compared to that in a body in asymptotic nonsynchronous rotation.  相似文献   
157.
A detailed examination of the location and orientation of sand dunes and other aeolian features within the north polar chasmata indicates that steep scarps strongly influence the direction and intensity of prevailing winds. These steep scarps are present at the heads and along the margins of the north polar chasmata. Topographic profiles of the arcuate head scarps and equator-facing wall of Chasma Boreale reveal unusually steep polar slopes ranging from ∼6°-30°. The relatively steep-sloped (∼8°), sinuous scarp at the head of two smaller chasmata, located west of Chasma Boreale, exhibits an obvious resistant cap-forming unit. Scarp retreat is occurring in places where the cap unit is actively being undercut by descending slope winds. Low-albedo surfaces lacking sand dunes or dust mantles are present at the base of the polar scarps. A ∼100-300 m deep moat, located at the base of the scarps, corresponds with these surfaces and indicates an area of active aeolian scour from descending katabatic winds. Small local dust storms observed along the equator-facing wall of Chasma Boreale imply that slope wind velocities in Chasma Boreale are sufficient to mobilize dust and sand-sized particles in the Polar Layered Deposits (PLD). Two amphitheater forms, located above the cap-forming unit of the sinuous scarp and west of Chasma Boreale, may represent an early stage of polar scarp and chasma formation. These two forms are developing within a younger section of polar layered materials. The unusually steep scarps associated with the polar chasmata have developed where resistant layers are present in the PLD, offering resistance during the headward erosion and poleward retreat of the scarps. Steep slopes that formed under these circumstances enhance the flow of down-scarp katabatic winds. On the basis of these observations, we reject the fluvial outflood hypothesis for the origin of the north polar chasmata and embrace a wind erosion model for their long-term development. In the aeolian model, off-pole katabatic winds progressively remove materials from the steep slopes below chasmata scarps, undermining resistant layers at the tops of scarps and causing retreat by headward erosion. Assuming a minimum age for the onset of formation of Chasma Boreale (105 yr) results in a maximum volumetric erosion rate of . Removal of this volume of material from the equator-facing wall and head scarps of chasma would require a rate for scarp retreat of .  相似文献   
158.
足尺钢框架振动台试验及动力弹塑性数值模拟   总被引:4,自引:1,他引:3  
本文通过有限元分析程序OpenSees对一足尺四层钢框架结构进行静力及动力弹塑性分析,结构构件采用自由度较少的纤维模型模拟。在振动台试验之前,预测足尺钢框架结构连续在小震、中震及大震作用下的响应,将预测分析结果与振动台试验结果进行对比,结果显示该数值模拟方法能很好地反映结构的弹塑性行为及破坏机制,准确预测结构的地震响应及大震下结构倒塌时间。这进一步说明基于纤维模型的整体结构弹塑性分析方法,由于自由度数少,适用于整体结构抗震分析。  相似文献   
159.
Despite the complexity of wave propagation in anisotropic media, reflection moveout on conventional common-midpoint (CMP) spreads is usually well described by the normal-moveout (NMO) velocity defined in the zero-offset limit. In their recent work, Grechka and Tsvankin showed that the azimuthal variation of NMO velocity around a fixed CMP location generally has an elliptical form (i.e. plotting the NMO velocity in each azimuthal direction produces an ellipse) and is determined by the spatial derivatives of the slowness vector evaluated at the CMP location. This formalism is used here to develop exact solutions for the NMO velocity in anisotropic media of arbitrary symmetry. For the model of a single homogeneous layer above a dipping reflector, we obtain an explicit NMO expression valid for all pure modes and any orientation of the CMP line with respect to the reflector strike. The contribution of anisotropy to NMO velocity is contained in the slowness components of the zero-offset ray (along with the derivatives of the vertical slowness with respect to the horizontal slownesses) — quantities that can be found in a straightforward way from the Christoffel equation. If the medium above a dipping reflector is horizontally stratified, the effective NMO velocity is determined through a Dix-type average of the matrices responsible for the ‘interval’ NMO ellipses in the individual layers. This generalized Dix equation provides an analytic basis for moveout inversion in vertically inhomogeneous, arbitrarily anisotropic media. For models with a throughgoing vertical symmetry plane (i.e. if the dip plane of the reflector coincides with a symmetry plane of the overburden), the semi-axes of the NMO ellipse are found by the more conventional rms averaging of the interval NMO velocities in the dip and strike directions. Modelling of normal moveout in general heterogeneous anisotropic media requires dynamic ray tracing of only one (zero-offset) ray. Remarkably, the expressions for geometrical spreading along the zero-offset ray contain all the components necessary to build the NMO ellipse. This method is orders of magnitude faster than multi-azimuth, multi-offset ray tracing and, therefore, can be used efficiently in traveltime inversion and in devising fast dip-moveout (DMO) processing algorithms for anisotropic media. This technique becomes especially efficient if the model consists of homogeneous layers or blocks separated by smooth interfaces. The high accuracy of our NMO expressions is illustrated by comparison with ray-traced reflection traveltimes in piecewise-homogeneous, azimuthally anisotropic models. We also apply the generalized Dix equation to field data collected over a fractured reservoir and show that P-wave moveout can be used to find the depth-dependent fracture orientation and to evaluate the magnitude of azimuthal anisotropy.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号