首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   712篇
  免费   17篇
  国内免费   6篇
测绘学   8篇
大气科学   47篇
地球物理   205篇
地质学   223篇
海洋学   56篇
天文学   109篇
综合类   2篇
自然地理   85篇
  2021年   7篇
  2020年   12篇
  2019年   11篇
  2018年   15篇
  2017年   11篇
  2016年   15篇
  2015年   12篇
  2014年   17篇
  2013年   36篇
  2012年   19篇
  2011年   15篇
  2010年   29篇
  2009年   27篇
  2008年   35篇
  2007年   29篇
  2006年   21篇
  2005年   18篇
  2004年   9篇
  2003年   19篇
  2002年   9篇
  2001年   12篇
  2000年   16篇
  1999年   10篇
  1998年   8篇
  1997年   12篇
  1996年   7篇
  1995年   13篇
  1994年   19篇
  1993年   15篇
  1992年   14篇
  1991年   10篇
  1990年   8篇
  1989年   5篇
  1987年   9篇
  1986年   11篇
  1985年   18篇
  1984年   12篇
  1983年   10篇
  1982年   11篇
  1981年   13篇
  1980年   9篇
  1979年   12篇
  1978年   11篇
  1977年   11篇
  1976年   13篇
  1975年   13篇
  1973年   9篇
  1972年   9篇
  1971年   12篇
  1969年   5篇
排序方式: 共有735条查询结果,搜索用时 15 毫秒
91.
Performing a comprehensive risk analysis is primordial to ensure a reliable and sustainable water supply. Though the general framework of risk analysis is well established, specific adaptation seems needed for systems such as water distribution networks (WDN). Understanding of vulnerabilities of WDN against deliberate contamination and consumers’ sensitivity against contaminated water use is very vital to inform decision-maker. This paper presents an innovative step-by-step methodology for developing comprehensive indicators to perform sensitivity, vulnerability and criticality analyses in case of absence of early warning system (EWS). The assessment and the aggregation of these indicators with specific fuzzy operators allow identifying the most critical points in a WDN. Intentional intrusion of contaminants at these points can potentially harm both the consumers as well as water infrastructure. The implementation of the developed methodology has been demonstrated through a case study of a French WDN unequipped with sensors.  相似文献   
92.
Probabilistic seismic risk assessment for spatially distributed lifelines is less straightforward than for individual structures. While procedures such as the ‘PEER framework’ have been developed for risk assessment of individual structures, these are not easily applicable to distributed lifeline systems, due to difficulties in describing ground‐motion intensity (e.g. spectral acceleration) over a region (in contrast to ground‐motion intensity at a single site, which is easily quantified using Probabilistic Seismic Hazard Analysis), and since the link between the ground‐motion intensities and lifeline performance is usually not available in closed form. As a result, Monte Carlo simulation (MCS) and its variants are well suited for characterizing ground motions and computing resulting losses to lifelines. This paper proposes a simulation‐based framework for developing a small but stochastically representative catalog of earthquake ground‐motion intensity maps that can be used for lifeline risk assessment. In this framework, Importance Sampling is used to preferentially sample ‘important’ ground‐motion intensity maps, and K‐Means Clustering is used to identify and combine redundant maps in order to obtain a small catalog. The effects of sampling and clustering are accounted for through a weighting on each remaining map, so that the resulting catalog is still a probabilistically correct representation. The feasibility of the proposed simulation framework is illustrated by using it to assess the seismic risk of a simplified model of the San Francisco Bay Area transportation network. A catalog of just 150 intensity maps is generated to represent hazard at 1038 sites from 10 regional fault segments causing earthquakes with magnitudes between five and eight. The risk estimates obtained using these maps are consistent with those obtained using conventional MCS utilizing many orders of magnitudes more ground‐motion intensity maps. Therefore, the proposed technique can be used to drastically reduce the computational expense of a simulation‐based risk assessment, without compromising the accuracy of the risk estimates. This will facilitate computationally intensive risk analysis of systems such as transportation networks. Finally, the study shows that the uncertainties in the ground‐motion intensities and the spatial correlations between ground‐motion intensities at various sites must be modeled in order to obtain unbiased estimates of lifeline risk. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
93.
Many seismic loss problems (such as disruption of distributed infrastructure and losses to portfolios of structures) are dependent upon the regional distribution of ground‐motion intensity, rather than intensity at only a single site. Quantifying ground‐motion over a spatially‐distributed region therefore requires information on the correlation between the ground‐motion intensities at different sites during a single event. The focus of the present study is to assess the spatial correlation between ground‐motion spectral accelerations at different periods. Ground motions from eight well‐recorded earthquakes were used to study the spatial correlations. On the basis of obtained empirical correlation estimates, we propose a geostatistics‐based method to formulate a predictive model that is suitable for simulation of spectral accelerations at multiple sites and multiple periods, in the case of crustal earthquakes in active seismic regions. While the calibration of this model and investigation of its implications were somewhat complex, the model itself is very simple to use for making correlation predictions. A user only needs to evaluate a simple equation relying on three sets of coefficients provided here to compute a correlation coefficient for spectral values at two periods and at a specified separation distance. These results may then be used in evaluating the seismic risk of portfolios of structures with differing fundamental periods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
94.
The conditional spectrum (CS, with mean and variability) is a target response spectrum that links nonlinear dynamic analysis back to probabilistic seismic hazard analysis for ground motion selection. The CS is computed on the basis of a specified conditioning period, whereas structures under consideration may be sensitive to response spectral amplitudes at multiple periods of excitation. Questions remain regarding the appropriate choice of conditioning period when utilizing the CS as the target spectrum. This paper focuses on risk‐based assessments, which estimate the annual rate of exceeding a specified structural response amplitude. Seismic hazard analysis, ground motion selection, and nonlinear dynamic analysis are performed, using the conditional spectra with varying conditioning periods, to assess the performance of a 20‐story reinforced concrete frame structure. It is shown here that risk‐based assessments are relatively insensitive to the choice of conditioning period when the ground motions are carefully selected to ensure hazard consistency. This observed insensitivity to the conditioning period comes from the fact that, when CS‐based ground motion selection is used, the distributions of response spectra of the selected ground motions are consistent with the site ground motion hazard curves at all relevant periods; this consistency with the site hazard curves is independent of the conditioning period. The importance of an exact CS (which incorporates multiple causal earthquakes and ground motion prediction models) to achieve the appropriate spectral variability at periods away from the conditioning period is also highlighted. The findings of this paper are expected theoretically but have not been empirically demonstrated previously. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
95.
In a companion paper, an overview and problem definition was presented for ground motion selection on the basis of the conditional spectrum (CS), to perform risk‐based assessments (which estimate the annual rate of exceeding a specified structural response amplitude) for a 20‐story reinforced concrete frame structure. Here, the methodology is repeated for intensity‐based assessments (which estimate structural response for ground motions with a specified intensity level) to determine the effect of conditioning period. Additionally, intensity‐based and risk‐based assessments are evaluated for two other possible target spectra, specifically the uniform hazard spectrum (UHS) and the conditional mean spectrum (CMS, without variability).It is demonstrated for the structure considered that the choice of conditioning period in the CS can substantially impact structural response estimates in an intensity‐based assessment. When used for intensity‐based assessments, the UHS typically results in equal or higher median estimates of structural response than the CS; the CMS results in similar median estimates of structural response compared with the CS but exhibits lower dispersion because of the omission of variability. The choice of target spectrum is then evaluated for risk‐based assessments, showing that the UHS results in overestimation of structural response hazard, whereas the CMS results in underestimation. Additional analyses are completed for other structures to confirm the generality of the conclusions here. These findings have potentially important implications both for the intensity‐based seismic assessments using the CS in future building codes and the risk‐based seismic assessments typically used in performance‐based earthquake engineering applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
96.
Benthic macroinvertebrate biomass and ammonium excretion rates were measured at four stations in the Gulf of Mexico near the Mississippi River mouth. Calculated areal excretion rates were then compared to sediment-water nitrogen fluxes measured in benthic bottom lander chambers at similar stations to estimate the potential importance of macroinvertebrate excretion to sediment nitrogen mineralization. Excretion rates for individual crustaceans (amphipods and decapods) was 2–21 nmoles NH4 + (mg dry weight)?1 h?1. The mean excretion rates for the polychaetes, Paraprionaspio pinnata [6–12 nmoles NH4 + (mg dry weight)?1h?1] and Magelona sp. [27–53 nmoles NH4 + (mg dry weight)?1h?1], were comparable or higher than previous measurements for similar size benthic or pelagic invertebrates incubated at the same temperature (22±1°C). Although the relatively high rates of excretion by these selective feeders may have been partially caused by experimental handling effects (e.g., removal from sediment substrates), they probably reflected the availability of nitrogen-rich food supplies in the Mississippi River plume. When the measured weight-specific rates were extrapolated to total areal biomass, areal macroinvertebrate excretion estimates ranged from 7 μmole NH4 + m?2h?1 at a 40-m deep station near the river mouth to 18 μmole NH4 + m?2h?1 at a shallower (28-m deep) station further from the river mouth. The net flux of ammonium and nitrate from the sediments to the water measured in bottom lander chambers in the same region were 15–53 μmole NH4 + m?2h?1 and ?25–21 μmole NO3 ? m?2h?1. These results suggest that excretion of NH4 + by macroinvertebrates could be a potentially important component of benthic nitrogen regeneration in the Mississippi River plume-Gulf shelf region.  相似文献   
97.
A sequence of shallow reef cores from Heron Reef, Great Barrier Reef, provides new insights into Holocene reef growth models. Isochron analysis of a leeward core transect suggests that the north‐western end of Heron Reef reached current sea‐level by ca 6·5 kyr bp and then prograded leeward at a rate of ca 19·6 m/kyr between 5·1 kyr and 4·1 kyr bp (pre‐1950) to the present reef margin. A single short core on the opposing margin of the reef is consistent with greater and more recent progradation there. Further to the east, one windward core reached modern sea‐level by ca 6·3 kyr bp , suggesting near ‘keep‐up’ behaviour at that location, but the opposing leeward margin behind the lagoon reached sea‐level much more recently. Hence, Heron Reef exhibited significantly different reef growth behaviour on different parts of the same margin. Mean reef accretion rates calculated from within 20 m of one another in the leeward core transect varied between ca 2·9 m and 4·7 m/kyr depending on relative position in the prograding wedge. These cores serve as a warning regarding the use of isolated cores to inform reef growth rates because apparent aggradation at any given location on a reef varies depending on its location relative to a prograding margin. Only transects of closely spaced cores can document reef behaviour adequately so as to inform reef growth models and sea‐level curves. The cores also emphasize potential problems in U‐series dates for corals within a shallow (ca 1·5 m) zone beneath the reef flat. Apparent age inversions restricted to that active diagenetic zone may reflect remobilization and concentration of Th in irregularly distributed microbialites or biofilms that were missed during sample vetting. Importantly, the Th‐containing contaminant causes ages to appear too old, rather than too young, as would be expected from younger cement.  相似文献   
98.
The Black Warrior Basin of the southeastern United States hosts one of the world’s most prolific and long-lived coalbed methane plays, and the wealth of experience in this basin provides insight into the relationships among basin hydrology, production performance, and environmental issues. Along the southeast margin of the basin, meteoric recharge of reservoir coal beds exposed in an upturned fold limb exerts a strong control on water chemistry, reservoir pressure, and production performance. Fresh-water plumes containing Na–HCO3 waters with low TDS content extend from the structurally upturned basin margin into the interior of the basin. Northwest of the plumes, coal beds contain Na–Cl waters with moderate to high-TDS content. Carbon isotope data from produced gas and mineral cements suggest that the fresh-water plumes have been the site of significant bacterial activity and that the coalbed methane reservoirs contain a mixture of thermogenic and late-stage biogenic gases.  相似文献   
99.
Ronen D  Sorek S  Gilron J 《Ground water》2012,50(1):27-36
This issue paper presents how certain policies regarding management of groundwater quality lead to unexpected and undesirable results, despite being backed by seemingly reasonable assumptions. This happened in part because the so-called reasonable decisions were not based on an integrative and quantitative methodology. The policies surveyed here are: (1) implementation of a program for aquifer restoration to pristine conditions followed, after failure, by leaving it to natural attenuation; (2) the "Forget About The Aquifer" (FATA) approach, while ignoring possible damage that contaminated groundwater can inflict on the other environmental systems; (3) groundwater recharge in municipal areas while neglecting the presence of contaminants in the unsaturated zone and conditions exerted by upper impervious surfaces; (4) the Soil Aquifer Treatment (SAT) practice considering aquifers to be "filters of infinite capacity"; and (5) focusing on well contamination vs. aquifer contamination to conveniently defer grappling with the problem of the aquifer as a whole. Possible reasons for the failure of these seemingly rational policies are: (1) the characteristic times of processes associated with groundwater that are usually orders of magnitude greater than the residence times of decision makers in their managerial position; (2) proliferation of improperly trained "groundwater experts" or policymakers with sectoral agendas alongside legitimate differences of opinion among groundwater scientists; (3) the neglect of the cyclic nature of natural phenomena; and (4) ignoring future long-term costs because of immediate costs.  相似文献   
100.
The pressure variations during the production of petroleum reservoir induce stress changes in and around the reservoir. Such changes of the stress state can induce marked deformation of geological structures for stress sensitive reservoirs as chalk or unconsolidated sand reservoirs. The compaction of those reservoirs during depletion affects the pressure field and so the reservoir productivity. Therefore, the evaluation of the geomechanical effects requires to solve in a coupling way the geomechanical problem and the reservoir multiphase fluid flow problem. In this paper, we formulate the coupled geomechanical‐reservoir problem as a non‐linear fixed point problem and improve the resolution of the coupling problem by comparing in terms of robustness and convergence different algorithms. We study two accelerated algorithms which are much more robust and faster than the conventional staggered algorithm and we conclude that they should be used for the iterative resolution of coupled reservoir‐geomechanical problem. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号