首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   390篇
  免费   16篇
  国内免费   2篇
测绘学   6篇
大气科学   26篇
地球物理   127篇
地质学   110篇
海洋学   25篇
天文学   85篇
综合类   1篇
自然地理   28篇
  2022年   5篇
  2021年   4篇
  2020年   10篇
  2019年   7篇
  2018年   11篇
  2017年   7篇
  2016年   10篇
  2015年   11篇
  2014年   7篇
  2013年   14篇
  2012年   14篇
  2011年   6篇
  2010年   17篇
  2009年   13篇
  2008年   16篇
  2007年   18篇
  2006年   8篇
  2005年   12篇
  2004年   4篇
  2003年   12篇
  2002年   6篇
  2001年   6篇
  2000年   7篇
  1999年   5篇
  1998年   4篇
  1997年   6篇
  1996年   3篇
  1995年   8篇
  1994年   12篇
  1993年   9篇
  1992年   4篇
  1991年   7篇
  1990年   6篇
  1989年   3篇
  1987年   6篇
  1986年   6篇
  1985年   13篇
  1984年   7篇
  1983年   5篇
  1982年   9篇
  1981年   9篇
  1980年   3篇
  1979年   8篇
  1978年   6篇
  1977年   8篇
  1976年   6篇
  1975年   4篇
  1973年   6篇
  1971年   5篇
  1969年   4篇
排序方式: 共有408条查询结果,搜索用时 15 毫秒
381.
This paper examines the observed directionality of ground motions in the Christchurch urban area during the 2010–2011 Canterbury, New Zealand earthquakes. A dataset of ground motions recorded at 20 strong motion stations over 10 different earthquake events is utilized to examine the ratios of various response spectral directionality definitions and the orientation of the maximum direction. Because the majority of previous related studies have utilized overlapping ground motion datasets from the NGA database, the results of this study provide a largely independent assessment of these ground motion aspects. It is found that the directionality ratio between the maximum (100th percentile) and 50th percentile orientation‐independent spectral acceleration is similar to that obtained from recent studies. Ground motions from the 4 September 2010 Darfield earthquake are shown to exhibit strong directionality for source‐to‐site distances up to Rrup = 30 km, notably further than results from a previous study, which suggests that such effects are generally limited to Rrup < 5 km. The adopted dataset also offers the unique potential to consider site‐specific effects on directionality ratios and maximum direction orientations; however, in both cases, site‐specific effects are found not to be significant in the observed empirical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
382.
383.
384.
Monitoring waters for indicator bacteria is required to protect the public from exposure to fecal pollution. Our proof-of-concept study describes a method for detecting fecal coliforms. The coliform Escherichia coli was used as a model fecal indicator. DNA probe-coated magnetic beads in combination with the electrochemical monitoring of the oxidation state of guanine nucleotides should allow for direct detection of bacterial RNA. To demonstrate this concept, we used voltammetry in connection with pencil electrodes to detect isolated E. coli 16S rRNA. Using this approach, 10(7) cells of E. coli were detected in a quantitative, reproducible fashion in 4h. Detection was achieved without a nucleic acid amplification step. The specificity of the assay for coliforms was demonstrated by testing against a panel of bacterial RNA. We also show that E. coli RNA can be detected directly from cell extracts. The method could be used for on-site detection and shows promise for adaptation into automated biosensors for water-quality monitoring.  相似文献   
385.
386.
A plot of spin rate versus orientation when Hyperion is at the pericenter of its orbit (surface of section) reveals a large chaotic zone surrounding the synchronous spin-orbit state of Hyperion, if the satellite is assumed to be rotating about a principal axis which is normal to its orbit plane. This means that Hyperion's rotation in this zone exhibits large, essentially random variations on a short time scale. The chaotic zone is so large that it surrounds the ½ and 2 states, and libration in the 3/2 state is not possible. Stability analysis shows that for libration in the synchronous and ½ states, the orientation of the spin axis normal to the orbit plane is unstable, whereas rotation in the 2 state is attitude stable. Rotation in the chaotic zone is also attitude unstable. A small deviation of the principal axis from the orbit normal leads to motion through all angles in both the chaotic zone and the attitude unstable libration regions. Measures of the exponential rate of separation of nearby trajectories in phase space (Lyapunov characteristic exponents) for these three-dimensional motions indicate the the tumbling is chaotic and not just a regular motion through large angles. As tidal dissipation drives Hyperion's spin toward a nearly synchronous value, Hyperion necessarily enters the large chaotic zone. At this point Hyperion becomes attitude unstable and begins to tumble. Capture from the chaotic state into the synchronous or ½ state is impossible since they are also attitude unstable. The 3/2 state does not exist. Capture into the stable 2 state is possible, but improbable. It is expected that Hyperion will be found tumbling chaotically.  相似文献   
387.
Voyager 2 images show parts of Enceladus' surface to be very smooth, lacking craters down to the resolution limit of 4 km. This absence of craters indicates geologically recent resurfacing, probably due to internal melting. However, calculations of current heating mechanisms, including radioactive decay and tidal heating due to Enceladus' resonance with Dione, yield heating rates too small to cause melting. The orbital mean motion of Janus (1980S1) is slightly less than twice that of Enceladus and, according to theoretical calculations, is currently decreasing as Janus' orbit evolves outward due to resonant torques from Saturn's rings. If Janus were ever locked into a stable 2:1 orbital commensurability with Enceladus, the resulting angular momentum transfer could have sufficiently enhanced the eccentricity of Enceladus' orbit for the ensuing tidal heating to have melted Enceladus' interior. The existence of a Laplace-like three-body resonance including Dione, although unlikely, would have increased heating. If Janus were indeed held in resonance with Enceladus until recently (107–108 years B.P.) when the lock was disrupted by an unspecified event (possibly a catastrophic collision which simultaneously created the coorbital pair, or by the influence of Dione) both the recent internal activity of Enceladus and the proximity of Janus to Saturn's rings may be explained. However, the predicted rapid time scale for ring evolution due to resonant torques from Saturn's inner moons remains a major problem.  相似文献   
388.
389.
A newly digitized record of snow depth from the Abisko Scientific Research Station in northern Sweden covers the period 1913-present. Mean snow depths were taken from paper records of measurements made on a profile comprising 10 permanent stakes. This long-term record yields snow depths consistent with two other shorter term Abisko records: measurements made at another 10-stake profile (1974-present) and at a single stake (1956-present). The measurement interval is variable, ranging from daily to monthly, and there are no data for about half of the winter months in the period 1930-1956. To fill the gaps, we use a simple snowpack model driven by concurrent temperature and precipitation measurements at Abisko. Model snow depths are similar to observed; differences between the two records are comparable to those between profile and single stake measurements. For both model and observed snow depth records, the most statistically significant trend is in winter mean snow depths, amounting to an increase of about 2 cm or 5 % of the mean per decade over the whole measurement period, and 10% per decade since the 1930-40s, but all seasonal means of snow depth show positive trends on the longest timescales. However, the start, end, and length of the snow season do not show any statistically significant long-term trends. Finally, the relation between the Arctic Oscillation index and Abisko temperature, precipitation and snow depth is positive and highly significant, with the best correlations for winter.  相似文献   
390.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号