首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   390篇
  免费   16篇
  国内免费   2篇
测绘学   6篇
大气科学   26篇
地球物理   127篇
地质学   110篇
海洋学   25篇
天文学   85篇
综合类   1篇
自然地理   28篇
  2022年   5篇
  2021年   4篇
  2020年   10篇
  2019年   7篇
  2018年   11篇
  2017年   7篇
  2016年   10篇
  2015年   11篇
  2014年   7篇
  2013年   14篇
  2012年   14篇
  2011年   6篇
  2010年   17篇
  2009年   13篇
  2008年   16篇
  2007年   18篇
  2006年   8篇
  2005年   12篇
  2004年   4篇
  2003年   12篇
  2002年   6篇
  2001年   6篇
  2000年   7篇
  1999年   5篇
  1998年   4篇
  1997年   6篇
  1996年   3篇
  1995年   8篇
  1994年   12篇
  1993年   9篇
  1992年   4篇
  1991年   7篇
  1990年   6篇
  1989年   3篇
  1987年   6篇
  1986年   6篇
  1985年   13篇
  1984年   7篇
  1983年   5篇
  1982年   9篇
  1981年   9篇
  1980年   3篇
  1979年   8篇
  1978年   6篇
  1977年   8篇
  1976年   6篇
  1975年   4篇
  1973年   6篇
  1971年   5篇
  1969年   4篇
排序方式: 共有408条查询结果,搜索用时 300 毫秒
311.
The C/N and stable C and N isotope ratios (δ13C, δ15N) of sedimentary and suspended particulate matter were determined in the Schelde Estuary. Suspended matter was divided into 2 to 5 size fractions by centrifugation. Four major pools of organic matter were recognized: riverine, estuarine, marine and terrestrial materials. Terrestrial organic matter (δ13C≈−26‰, δ15N≈3.5‰, C/N≈21) is important for the sedimentary pool, but suspended matter is dominated by the marine (δ13C≈−18‰, δ15N≈9‰, C/N≈8), riverine (δ13C≈−30‰, δ15N≈9‰, C/N≈7.5) and estuarine (δ13C≈−29‰, δ15N≈15‰, C/N≈8) end-members. In the upper estuary, the suspended matter size fractions vary systematically in their carbon and nitrogen biogeochemistry, with the small particles having low C/N ratios, depleted δ13C and enriched δ15N values relative to large particles. Moreover, sedimentary and suspended matter differ significantly in terms of C/N ratios (17 vs. 8.9), δ13C (−26.3 vs. −28.9‰) and δ15N (+6.9 vs. 12.0‰). In the lower estuary, suspended matter fractions are similar and sedimentary and suspended organic matter differ only in terms of δ13C (−23.5 vs. −20.1‰). Our data indicate that autochthonous organic matter contributes significantly to the total suspended matter and that the suspended organic matter composition cannot be explained in terms of conservative mixing of riverine and terrestrial sources on the one hand and marine sources on the other hand.  相似文献   
312.
Natural Hazards - On May 3, 2016, a wildfire swept into the city of Fort McMurray, Alberta. This natural disaster was significant in both its scale and impact, as the fire prompted a sudden onset...  相似文献   
313.
Perfluorinated chemicals including PFOA and PFOS have been widely used in consumer products and have become ubiquitous pollutants widely distributed in the aqueous environment. Following a major flood event in 2011, water samples were collected along a spatial gradient of the Brisbane River system to provide an initial estimate of the release of PFASs from flooded urban areas. PFOA (mean concentrations 0.13–6.1 ng L−1) and PFOS (mean concentrations 0.18–15 ng L−1) were the most frequently detected and abundant PFASs. Mean total PFASs concentrations increased from 0.83 ng L−1 at the upstream Wivenhoe Dam to 40 ng L−1 at Oxley Creek, representing an urban catchment. Total masses of PFOA and PFOS delivered into Moreton Bay from January to March were estimated to be 5.6 kg and 12 kg respectively. From this study, urban floodwaters appear to be a previously overlooked source of PFASs into the surrounding environment.  相似文献   
314.
315.
This study investigates stochastic optimization of dense nonaqueous phase liquid (DNAPL) remediation design at Dover Air Force Base Area 5 using emulsified vegetable oil (EVO) injection. The Stochastic Cost Optimization Toolkit (SCOToolkit) is used for the study, which couples semianalytical DNAPL source depletion and transport models with parameter estimation, error propagation, and stochastic optimization modules that can consider multiple sources and remediation strategies. Model parameters are calibrated to field data conditions on prior estimates of parameters and their uncertainty. Monte Carlo simulations are then performed to identify optimal remediation decisions that minimize the expected net present value (NPV) cleanup cost while maintaining concentrations at compliance wells under the maximum contaminant level (MCL). The results show that annual operating costs could be reduced by approximately 50% by implementing the identified optimal remediation strategy. We also show that recalibration and reoptimization after 50 years using additional monitoring data could lead to a further 60% reduction in annual operating cost increases the reliability of the proposed remediation actions.  相似文献   
316.
Two-well tracer tests are often conducted to investigate subsurface solute transport in the field. Analyzing breakthrough curves in extraction and monitoring wells using numerical methods is nontrivial due to highly nonuniform flow conditions. We extended approximate analytical solutions for the advection-dispersion equation for an injection-extraction well doublet in a homogeneous confined aquifer under steady-state flow conditions for equal injection and extraction rates with no transverse dispersion and negligible ambient flow, and implemented the solutions in Microsoft Excel using Visual Basic for Application (VBA). Functions were implemented to calculate concentrations in extraction and monitoring wells at any location due to a step or pulse injection. Type curves for a step injection were compared with those calculated by numerically integrating the solution for a pulse injection. The results from the two approaches are similar when the dispersivity is small. As the dispersivity increases, the latter was found to be more accurate but requires more computing time. The code was verified by comparing the results with published-type curves and applied to analyze data from the literature. The method can be used as a first approximation for two-well tracer test design and data analysis, and to check accuracy of numerical solutions. The code and example files are publicly available.  相似文献   
317.
318.
This paper examines four methods by which ground motions can be selected for dynamic seismic response analyses of engineered systems when the underlying seismic hazard is quantified via ground motion simulation rather than empirical ground motion prediction equations. Even with simulation‐based seismic hazard, a ground motion selection process is still required in order to extract a small number of time series from the much larger set developed as part of the hazard calculation. Four specific methods are presented for ground motion selection from simulation‐based seismic hazard analyses, and pros and cons of each are discussed via a simple and reproducible illustrative example. One of the four methods (method 1 ‘direct analysis’) provides a ‘benchmark’ result (i.e., using all simulated ground motions), enabling the consistency of the other three more efficient selection methods to be addressed. Method 2 (‘stratified sampling’) is a relatively simple way to achieve a significant reduction in the number of ground motions required through selecting subsets of ground motions binned based on an intensity measure, IM. Method 3 (‘simple multiple stripes’) has the benefit of being consistent with conventional seismic assessment practice using as‐recorded ground motions, but both methods 2 and 3 are strongly dependent on the efficiency of the conditioning IM to predict the seismic responses of interest. Method 4 (‘generalized conditional intensity measure‐based selection’) is consistent with ‘advanced’ selection methods used for as‐recorded ground motions and selects subsets of ground motions based on multiple IMs, thus overcoming this limitation in methods 2 and 3. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
319.
广州花园酒店原结构及改造后结构均不满足我国现行规范的抗震构造要求。本文依据基于性能的抗震设计思想,提出结构宏观上的层间位移角目标和微观上的结构构件变形及损伤目标,采用PKPM系列2005年版SATWE和ETABS 9.0中文版进行结构弹性分析,采用PKPM系列EPDA和美国Buffalo大学的IDARC 2D 6.0进行弹塑性静力推覆分析和弹塑性动力时程分析,并采用TNO公司的DIANA8.0进行单榀剪力墙的极限承载力分析,研究结构是否满足设定的整体及结构构件性能目标要求,确保改造后的结构达到"小震不坏、中震可修、大震不倒"的要求。  相似文献   
320.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号