首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   544篇
  免费   13篇
  国内免费   7篇
测绘学   1篇
大气科学   34篇
地球物理   36篇
地质学   363篇
海洋学   16篇
天文学   14篇
自然地理   100篇
  2016年   3篇
  2014年   7篇
  2013年   28篇
  2012年   7篇
  2011年   11篇
  2010年   18篇
  2009年   9篇
  2008年   16篇
  2007年   16篇
  2006年   15篇
  2005年   15篇
  2004年   10篇
  2003年   10篇
  2002年   10篇
  2001年   10篇
  2000年   14篇
  1999年   8篇
  1998年   20篇
  1997年   29篇
  1996年   26篇
  1995年   16篇
  1994年   5篇
  1993年   13篇
  1992年   21篇
  1991年   22篇
  1990年   18篇
  1989年   16篇
  1988年   16篇
  1987年   18篇
  1986年   12篇
  1985年   12篇
  1984年   8篇
  1983年   12篇
  1982年   12篇
  1981年   10篇
  1979年   10篇
  1978年   5篇
  1977年   7篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1972年   4篇
  1971年   5篇
  1970年   3篇
  1969年   3篇
  1968年   2篇
  1967年   5篇
  1963年   3篇
  1942年   3篇
排序方式: 共有564条查询结果,搜索用时 15 毫秒
481.
Nickpoint recession in the Buchan karst, southeastern Australia, has resulted in the formation of an underground meander cut-off system in the Murrindal River valley. Three nickpoints have been stranded in the surface channel abandoned by the subterranean piracy, and these can be correlated with river terraces and epiphreatic cave passages in the nearby Buchan River valley. The presence of palaeomagnetically reversed sediments in the youngest cave passage in the Buchan valley implies that the topographically lowest nickpoint in the Murrindal valley is more than 730 ka old, and the other nickpoints are probably several million years old. The nickpoints are occasionally active during floods, but the diversion of most surface flow underground has slowed down their retreat to the extent that they have been effectively stationary for several million years. Underground nickpoint migration has been by both incision within major phreatic conduits and their abandonment for lower-level passages. The nickpoints are all present in the upstream part of the cave system, but have not migrated past the sink in the river channel, despite the long period of time available for this to happen. The sink is characterized by collapsed limestone blocks; these filter out the coarse bedload from the river channel. As a result, erosion within the cave passages is dominantly solutional and therefore slower than in the surface channel, where it is mostly mechanical. In addition, to transmit a drop in base level the cave system requires the removal of a larger volume of rock than for the surface migration of a nickpoint, because any roof collapse material in the subsurface system must be removed. These factors have slowed the migration of the base-level changes through the subsurface system, and may be a general feature in caves that have diffuse sinks as their main inputs.  相似文献   
482.
483.
The south-eastern United States and Gulf Coast of Mexico is physiographically diverse, although dominated by a broad coastal plain. Much of the region has a humid, warm temperate climate with little seasonality in precipitation but strong seasonality in runoff owing to high rates of summer evapotranspiration. The climate of southern Florida and eastern Mexico is subtropical with a distinct summer wet season and winter dry season. Regional climate models suggest that climate change resulting from a doubling of the pre-industrial levels of atmospheric CO2 may increase annual air temperatures by 3–4°C. Changes in precipitation are highly uncertain, but the most probable scenario shows higher levels over all but the northern, interior portions of the region, with increases primarily occurring in summer and occurring as more intense or clustered storms. Despite the increases in precipitation, runoff is likely to decline over much of the region owing to increases in evapotranspiration exceeding increases in precipitation. Only in Florida and the Gulf Coast areas of the US and Mexico are precipitation increases likely to exceed evapotranspiration increases, producing an increase in runoff. However, increases in storm intensity and clustering are likely to result in more extreme hydrographs, with larger peaks in flow but lower baseflows and longer periods of drought. The ecological effects of climate change on freshwaters of the region include: (1) a general increase in rates of primary production, organic matter decomposition and nutrient cycling as a result of higher temperatures and longer growing seasons: (2) reduction in habitat for cool water species, particularly fish and macroinvertebrates in Appalachian streams; (3) reduction in water quality and in suitable habitat in summer owing to lower baseflows and intensification of the temperature–dissolved oxygen squeeze in many rivers and reservoirs; (4) reduction in organic matter storage and loss of organisms during more intense flushing events in some streams and wetlands; (5) shorter periods of inundation of riparian wetlands and greater drying of wetland soils, particularly in northern and inland areas; (6) expansion of subtropical species northwards, including several non-native nuisance species currently confined to southern Florida; (7) expansion of wetlands in Florida and coastal Mexico, but increase in eutrophication of Florida lakes as a result of greater runoff from urban and agricultural areas; and (8) changes in the flushing rate of estuaries that would alter their salinity regimes, stratification and water quality as well as influence productivity in the Gulf of Mexico. Many of the expected climate change effects will exacerbate current anthropogenic stresses on the region's freshwater systems, including increasing demands for water, increasing waste heat loadings and land use changes that alter the quantity and quality of runoff to streams and reservoirs. Research is needed especially in several critical areas: long-term monitoring of key hydrological, chemical and biological properties (particularly water balances in small, forested catchments and temperature-sensitive species); experimental studies of the effects of warming on organisms and ecosystem processes under realistic conditions (e.g. in situ heating experiments); studies of the effects of natural hydrological variation on biological communities; and assessment of the effects of water management activities on organisms and ecosystem processes, including development and testing of management and restoration strategies designed to counteract changes in climate. © 1997 John Wiley & Sons, Ltd.  相似文献   
484.
Abstract

From 1967 until 1986, uranium mine dewatering increased dissolved gross alpha, gross beta, uranium and radium activities and dissolved selenium and molybdenum concentrations in the Puerco River as indicated by time trends, areal patterns involving distance from the mines and stream discharge. Additionally, increased dissolved uranium concentrations were identified in groundwater under the Puerco River from where mine discharges entered the river to approximately the Arizona-New Mexico State line about 65 km downstream. Total mass of uranium and gross alpha activity released to the Puerco River by mine dewatering were estimated as 560 Mg (560 × 106 g) and 260 Ci, respectively. In comparison, a uranium mill tailings pond spill on 16 July 1979, released an estimated 1.5 Mg of uranium and 46 Ci of gross alpha activity. Mass balance calculations for alluvial ground water indicate that most of the uranium released did not remain in solution. Sorption of uranium on sediments and uptake of uranium by plants probably removed the uranium from solution.  相似文献   
485.
486.
Many pre‐Mesozoic records of Earth history are derived from shallow water carbonates deposited on continental shelves. While these carbonates contain geochemical proxy records of climate change, it is the stratal architecture of layered carbonate units that often is used to build age models based on the idea that periodic astronomical forcing of sea‐level controls the layering. Reliable age models are crucial to any interpretation of rates and durations of environmental change, but the physical processes that actually control this stratal architecture in shallow water carbonates are controversial. In particular, are upward‐shallowing stacks of carbonate beds bounded by flooding surfaces (‘parasequences’) truly a record of relative sea‐level change? The purpose of this study is to examine a tidal flat that is actively accumulating carbonate stratigraphy, and to determine the relative importance of tidal channel migration (poorly known, but investigated here) and Holocene sea‐level rise (well‐known) in controlling post‐glacial parasequence architecture. This work represents a field study of peritidal carbonate accumulation at Triple Goose Creek, north‐west Andros Island. By integrating surface facies maps with differential global positioning system topographic surveys, a quantitative relationship between facies and elevation is derived. Sedimentary facies are sensitive to elevation changes as small as 5 cm, and are responding to both internal (distance to nearest tidal channel) and external (sea‐level rise) controls. The surface maps also are integrated with 187 sediment cores that each span the entire Holocene succession. While flooding of the Triple Goose Creek area should have occurred by ca 4500 years ago, preservation of Holocene sediment did not begin until 1200 years ago. The tidal channels are shown to be stationary, or to migrate sluggishly at up to 6 cm per year. Therefore, while the location of tidal channels is responsible for the modern mosaic of surface facies, these facies and the channels that control them have not migrated substantially during the ca 1200 years of sediment accumulation at Triple Goose Creek. Once the region was channellized, vertical and lateral shifts in facies, such as the landward retreating shoreline, expanding mangrove ponds and seaward advancing inland algal marsh, are driven by changes in relative sea‐level and sediment supply, not migrating channels. While stratigraphic columns look different depending on the distance to the nearest tidal channel, the overall parasequence architecture everywhere at Triple Goose Creek records an upward‐shallowing trend controlled by the infilling of accommodation space generated by post‐glacial sea‐level rise.  相似文献   
487.
A piston core from the Maldives carbonate platform was investigated for carbonate mineralogy, grain‐size distributions, calcium carbonate content and organic carbon. The sedimentary record was linked to Late Pleistocene sea‐level variations, using an age model based on oxygen isotopes obtained from planktonic foramanifera, nannofossil biostratigraphy and 14C age determinations. The correlation between the sedimentary record and Late Pleistocene sea‐level showed that variations in aragonite and mud during the past 150 000 years were clearly related to flooding and sea floor exposure of the main lagoons of the atolls of the Maldives carbonate platform. Platform flooding events were characterized by strongly increased deposition of aragonite and mud within the Inner Sea of the Maldives. Exposure events, in contrast, can be recognized by rapid decreases in the values of both proxy records. The results show that sediments on the Maldives carbonate platform contain a continuous record of Pleistocene sea‐level variations. These sediments may, therefore, contribute to a better understanding of regional and even global sea‐level changes, and yield new insights into the interplay between ocean currents and carbonate platform morphology.  相似文献   
488.
Current models of alluvial to coastal plain stratigraphy are concept‐driven and focus on relative sea‐level as an allogenic control. These models are tested herein using data from a large (ca 100 km long and 300 m thick), continuous outcrop belt (Upper Cretaceous Blackhawk Formation, central Utah, USA). Many channelized fluvial sandbodies in the Blackhawk Formation have a multilateral and multistorey internal character, and they generally increase in size and abundance (from ca 10% to ca 30% of the strata) from base to top of the formation. These regional, low‐resolution trends exhibit much local variation, but are interpreted to reflect progressively decreasing tectonic subsidence in the upper Blackhawk Formation and overlying Castlegate Sandstone. The trend may also incorporate progressively more frequent channel avulsion during deposition of the lower Blackhawk Formation. Laterally extensive coal zones formed on the coastal plain during shallow‐marine transgressions, and define the high‐resolution stratigraphic framework of the lower Blackhawk Formation. Large (up to 25 m thick and 1 to 6 km wide), multistorey, multilateral, fluvial channel‐complex sandbodies that overlie composite erosion surfaces occur at distinct stratigraphic levels, and are interpreted as fluvial incised valley fills. Low amplitude (<30 m) relative sea‐level variations are interpreted as the dominant control on stratigraphic architecture in the lower Blackhawk Formation, which was deposited up to 50 km inland from the coeval shoreline. In contrast, the high‐resolution stratigraphy of the upper Blackhawk Formation is poorly defined, and channelized fluvial sandbodies are poorly organized. Vertical and laterally offset stacking of a small proportion (<10%) of sandbodies produced ‘clusters’ that are not confined by ‘master’ erosion surfaces. Avulsion is interpreted to dominate the stratigraphic architecture of the upper Blackhawk Formation. This data‐driven analysis indicates that alluvial to coastal plain stratigraphic architecture reflects a combination of various allogenic controls and autogenic behaviours. The relative sea‐level control emphasized in sequence stratigraphic models is only rarely dominant.  相似文献   
489.
Abstract

The Pimpama coastal plain is situated in southern Moreton Bay, in subtropical eastern Australia. The plain is low lying and tidal and is situated behind a large sand barrier island. Largely due to recent (30 years) drainage networks within the flood plain, surface water quality has declined. Groundwater hydrographs have enabled the determination of different flow systems: a deeper system responding to seasonal weather patterns and a shallower flow system more responsive to individual rainfall events. Elevated potentiometric heads in semi-confined aquifers reflect upward movement of saline to hypersaline groundwaters. However, interaction of this deeper groundwater with shallower groundwater and the surface drains is yet to be determined. Recharge to the shallower system is by direct infiltration while recharge to the deeper system includes a component from landward ranges or bedrock outcrops within the plain. Discrimination between groundwater bodies is possible using salinity, ionic ratios and stable isotopes. Features of groundwater hydrology, the distribution of salinity and variations in water chemistry all suggest that under current conditions infiltration has increased, plus there is a greater landward migration of groundwaters of marine origin.  相似文献   
490.
Guest editorial     
The past decade has witnessed extensive development of measures that examine characteristics of spatial subsets (local spaces) defined with respect to a complete data set (global space). Such procedures have evolved independently in fields such as geography, GIS, cartography, remote sensing, and landscape ecology. Collectively, we label these procedures as local spatial methods. We focus on those methods that share a common goal of identifying subsets whose characteristics are statistically ‘significant’ in some way. We propose the concept of local spatial statistical analysis (LoSSA) both as an integrative structure for existing methods and as a framework that facilitates the development of new local and global statistics. By formalizing what is involved when a particular local statistic is used, LoSSA helps to reveal the key features and limitations of the procedure. These include a consideration of the nature of the spatial subsets, their spatial relationship to the complete data set, and the relationship between a given global statistic and the corresponding local statistics computed for the data set.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号