Gold deposits and occurrences small in reserves and high in Au grade conventionally determine the line of prospecting in terrigenous sequences of the Verkhoyansk–Kolyma region. In this paper, the geological structure of such gold objects is considered with the example of the deposits and prospects making up the Zhdaninsky ore–placer cluster in the Republic of Sakha (Yakuia). From lithological, structural, and mineralogical–geochemical data, the formation conditions of ore-bearing complexes are specified, the geological evolution history of the northern Ol’chan Zone of the Kular–Nera Belt is reconstructed, and the zonal distribution of mineralization within the ore–placer cluster is revealed. The structural–compositional complexes were formed in the following succession: (1) sedimentation at the shelf of the passive margin accompanied by synsedimentation deformations; (2) metagenesis of sediments and the development of bedding-plane intraformational detachments of collision stage D1 under conditions of tangential compression and accompanied by the formation of carbon dioxide–aqueous metamorphic fluid at a temperature of 300°C and under a pressure of 1.4 kbar; (3) folding and faulting of orogenic stage D2 with the formation of synkinematic magmatic bodies, metasomatic alteration, and Au-bearig mineral assemblages. Small Au-bearing objects with veined mineralization and high Au grade are localized in structures of stage D2 transverse to bedding-plane schistosity S1. They form at the collision stage above intraformational detachment surfaces and are controlled by shear structures of the orogenic stage with misalignment of these deformations. The ore zoning is determined by the distribution of Co and Ni minerals and by variations in the anionic composition of ore (S, As, Sb). 相似文献
Natural Resources Research - Depletion of shallow mineral resources caused by deep mining has become an inevitable trend, and deep mining can increase safety accidents and geological hazards.... 相似文献
The solar sources of the magnetic storms of November 8 and 10, 2004, are analyzed. The preliminary results of such an analysis [Yermolaev et al., 2005] are critically compared with the results of the paper [Tsurutani et al., 2008], where solar flares were put in correspondence with these magnetic storms. The method for determining solar sources that cause powerful magnetospheric storms is analyzed. It has been indicated that an optimal approach consists in considering coronal mass ejections (CMEs) as storm sources and accompanying flares as additional information about the location of CME origination. 相似文献
As a classification method, cluster analysis has been widely used in geology and geochemical exploration, but sometimes the results of clustering were difficult to interpret, or missclassification of geochemically similar members into entirely different clusters might occur. The reason for this is suggested and discussed. A new technique, fuzzy clustering is introduced. Comparision of the results of fuzzy clustering with conventional clustering using a set of hypothetical data is made. An example of a practical application indicating the apparent merits of fuzzy clustering is given. This technique might show great promise when applicated to geochemical exploration problems. 相似文献