首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   1篇
  国内免费   1篇
测绘学   1篇
大气科学   11篇
地球物理   21篇
地质学   19篇
海洋学   11篇
天文学   17篇
综合类   3篇
自然地理   10篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   3篇
  2011年   1篇
  2010年   4篇
  2009年   7篇
  2008年   6篇
  2007年   7篇
  2006年   4篇
  2005年   6篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   5篇
  1991年   2篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有93条查询结果,搜索用时 296 毫秒
41.
This special column was the outcomes of the Public Forum on China’s Spatial Strategic Planning and Development in the National 12th Five-year Plan held at the University of Hong Kong (HKU) in April 2011.The Public Forum was jointly organized by the International  相似文献   
42.
The gradient-based similarity approach removes turbulent fluxes as governing parameters and replaces them with vertical gradients of mean wind speed and potential temperature. As a result, the gradient Richardson number, Ri, appears as a stability parameter instead of the Monin–Obukhov stability parameter z/L (L is the Obukhov length). The gradient-based scaling is more appropriate for moderate and very stable conditions when the gradients are large and their errors are relatively small whereas z/L becomes ambiguous in these conditions because turbulent fluxes are small. However, the gradient-based formulation is faced with a problem related to the influence of Ri outliers: outliers with high values of Ri can exist in conditions that are really near-neutral. These outliers are mapped into the very stable range in plots in which Ri is the independent variable and may lead to spurious dependencies for bin-averaged data (spurious bin-averaging). This effect is quite large for functions that are steep for the gradient-based scaling. The present study uses the Surface Heat Budget of the Arctic Ocean (SHEBA) data to examine the problem and proposes two methods, conditional analysis and independent binning, to limit the influence of outliers on bin-averaging. A disadvantage of the conditional analysis is associated with eliminating outliers based on criteria that could be considered as subjective. The independent bin-averaging method does not have this disadvantage, but the scatter of the bin-averaged points is higher than for the conditional analysis, rendering data analysis and interpretation difficult.  相似文献   
43.
This paper surveys results of the comprehensive turbulent measurements in the stable boundary layer (SBL) made over the Arctic pack ice during the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) in the Beaufort Gyre from October 1997 through September 1998. Turbulent fluxes and mean meteorological data were continuously measured and reported hourly at five levels on a 20-m main SHEBA tower. Eleven months of measurements during SHEBA cover a wide range of stability conditions, from the weakly unstable regime to very stable stratification, and allow studying the SBL in detail. A brief overview of the SBL regimes, the flux-profile relationships, the turbulent Prandtl number, and other parameters obtained during SHEBA is given. The traditional Monin—Obukhov approach, z-less scaling, and gradient-based scaling are evaluated and discussed based on the data from SHEBA.  相似文献   
44.
Measurements of atmospheric turbulence made over the Arctic pack ice during the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) are used to determine the limits of applicability of Monin–Obukhov similarity theory (in the local scaling formulation) in the stable atmospheric boundary layer. Based on the spectral analysis of wind velocity and air temperature fluctuations, it is shown that, when both the gradient Richardson number, Ri, and the flux Richardson number, Rf, exceed a ‘critical value’ of about 0.20–0.25, the inertial subrange associated with the Richardson–Kolmogorov cascade dies out and vertical turbulent fluxes become small. Some small-scale turbulence survives even in this supercritical regime, but this is non-Kolmogorov turbulence, and it decays rapidly with further increasing stability. Similarity theory is based on the turbulent fluxes in the high-frequency part of the spectra that are associated with energy-containing/flux-carrying eddies. Spectral densities in this high-frequency band diminish as the Richardson–Kolmogorov energy cascade weakens; therefore, the applicability of local Monin–Obukhov similarity theory in stable conditions is limited by the inequalities RiRi cr and RfRf cr. However, it is found that Rf cr  =  0.20–0.25 is a primary threshold for applicability. Applying this prerequisite shows that the data follow classical Monin–Obukhov local z-less predictions after the irrelevant cases (turbulence without the Richardson–Kolmogorov cascade) have been filtered out.  相似文献   
45.
Turbulent and mean meteorological data collected at five levels on a 20-m tower over the Arctic pack ice during the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) are analyzed to examine different regimes of the stable boundary layer (SBL). Eleven months of measurements during SHEBA cover a wide range of stability conditions, from the weakly unstable regime to very stable stratification. Scaling arguments and our analysis show that the SBL can be classified into four major regimes: (i) surface-layer scaling regime (weakly stable case), (ii) transition regime, (iii) turbulent Ekman layer, and (iv) intermittently turbulent Ekman layer (supercritical stable regime). These four regimes may be considered as the basic states of the traditional SBL. Sometimes these regimes, especially the last two, can be markedly perturbed by gravity waves, detached elevated turbulence (‘upside down SBL’), and inertial oscillations. Traditional Monin–Obukhov similarity theory works well in the weakly stable regime. In the transition regime, Businger–Dyer formulations work if scaling variables are re-defined in terms of local fluxes, although stability function estimates expressed in these terms include more scatter compared to the surface-layer scaling. As stability increases, the near-surface turbulence is affected by the turning effects of the Coriolis force (the turbulent Ekman layer). In this regime, the surface layer, where the turbulence is continuous, may be very shallow (< 5 m). Turbulent transfer near the critical Richardson number is characterized by small but still significant heat flux and negligible stress. The supercritical stable regime, where the Richardson number exceeds a critical value, is associated with collapsed turbulence and the strong influence of the earth’s rotation even near the surface. In the limit of very strong stability, the stress is no longer a primary scaling parameter.  相似文献   
46.
47.
48.
49.
Erratum     
Abstract

Several physical aspects of continuous subbottom profiling are presented, and their relationship to operating characteristics of profiling instruments is discussed. Interpretation of data produced by shallow‐penetration continuous profilers, such as the SONIA system, is a process of transformation of the continuous measurement of the travel times of reflected sound pulses into geologic phenomena. Essentially, the continuous profiler is a geologic tool; interpretation of the data is based on geologic observation and reasoning, irrespective of the further use of the information obtained in applied science. However, interpreters must have sufficient knowledge of the geophysical system and of the equipment design to be in a position to evaluate the significance of their interpretation.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号