首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   4篇
测绘学   1篇
大气科学   24篇
地球物理   22篇
地质学   153篇
海洋学   15篇
天文学   3篇
综合类   1篇
自然地理   34篇
  2021年   1篇
  2020年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   15篇
  2012年   3篇
  2011年   7篇
  2010年   4篇
  2009年   6篇
  2008年   7篇
  2007年   7篇
  2006年   12篇
  2005年   2篇
  2004年   11篇
  2003年   5篇
  2002年   11篇
  2001年   5篇
  2000年   5篇
  1999年   10篇
  1998年   5篇
  1997年   11篇
  1996年   12篇
  1995年   2篇
  1994年   6篇
  1993年   6篇
  1992年   8篇
  1991年   18篇
  1990年   11篇
  1989年   3篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   8篇
  1984年   4篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   5篇
  1976年   3篇
  1973年   2篇
  1972年   2篇
  1969年   2篇
  1966年   1篇
  1964年   1篇
  1963年   1篇
排序方式: 共有253条查询结果,搜索用时 0 毫秒
141.
Anorthositic rocks compose 35–40% of the Middle Proterozoic(Keweenawan; 1?1 Ga) Duluth Complex—a large, compositemafic body in northeastern Minnesota that was intruded beneatha comagmatic volcanic edifice during the formation of the Midcontinentrift system. Anorthositic rocks, of which six general lithologictypes occur in one area of the complex, are common in an earlyseries of intrusions. They are characterized on a local scale(meters to kilometers) by nonstratiform distribution of rocktypes, variably oriented plagioclase lamination, and compositeintrusive relationships. Variably zoned, subhedral plagioclaseof nearly constant average An (60) makes up 82–98% ofthe anorthositic rocks. Other phases include granular to poikiliticolivine (Fo66–38), poikilitic clinopyrox-ene (En'73–37),subpoikilitic Fe-Ti oxides, and various late-stage and secondaryminerals. Whole-rock compositions of anorthositic rocks are modelled bymass balance to consist of three components: cumulus plagioclase(70–95 wt.%), minor cumulus olivine (0–5%), anda gabbroic postcumulus assemblage (5–27%) representinga trapped liquid. The postcumulus assemblage has textural andcompositional characteristics which are consistent with crystallizationfrom basaltic magma ranging from moderately evolved olivinetholeiite to highly evolved tholeiite (mg=60–25). Sympatheticvariations of mg in plagioclase and in mafic minerals suggestthat cumulus plagioclase, though constant in An, was in approximateequilibrium with the variety of basaltic magma compositionswhich produced the postcumulus assemblages. Standard models of mafic cumulate formation by fractional crystallizationof basaltic magmas in Duluth Complex chambers, although ableto explain the petrogenesis of younger stratiform troctoliticto gabbroic intrusions, are inadequate to account for the field,petrographic, and geochemical characteristics of the anorthositicrocks. Rather, we suggest an origin by multiple intrusions ofplagioclase crystal mushes—basaltic magmas charged withas much as 60% intratelluric plagioclase. The high concentrationsof cumulus plagioclase (70–95%) estimated to compose theanorthositic rocks may reflect expulsion of some of the transportingmagma during emplacement or early postcumulus crystallizationof only plagioclase from evolved hyperfeldspathic magma. Althoughthe evolved compositions of anorthositic rocks require significantfractionation of mafic minerals, geophysical evidence indicatesthat ultramafic rocks are, as exposure implies, rare in theDuluth Complex and implies that plagioclase crystal mushes werederived from deeper staging chambers. This is consistent withinterpretations of olivine habit and plagioclase zoning. Moreover,plagioclase could have been segregated from coprecipitatingmafic phases in such lower crustal chambers because of the buoyancyof plagioclase in basaltic magmas at high pressure. The geochemicaleffects of plagioclase suspension in basaltic magmas are consistentwith observed compositions of cumulus plagioclase in the anorthositicrocks and with the geochemical characteristics of many comagmaticbasalts. The petrogenesis of the anorthositic rocks and theoverall evolution of Keweenawan magmas can be related to thedynamics of intracontinental rift formation.  相似文献   
142.
Carbonate buildups in the Flinders Ranges of mid-Early Cambrian age grew during a period of high archaeocyath diversity and are of two types: (1) low-energy, archaeocyath-sponge-spicule mud mounds, and (2) high-energy, archaeocyath-calcimicrobe (calcified microbial microfossil) bioherms. Mud mounds are composed of red carbonate mudstone and sparse to abundant archaeocyath floatstone, have a fenestral fabric, display distinct stromatactis, contain abundant sponge spicules and form structures up to 150m wide and 80 m thick. Bioherms are either red or dark grey limestone and occur as isolated small structures 2–20 m in size surrounded by cross-bedded calcarenites and calcirudites or as complexes of mounds and carbonate sands several hundreds of metres across. Red bioherms comprise masses of white Epiphyton with scattered archaeocyaths and intervening areas of archaeocyath-rich lime mudstone. Grey bioherms are complex intergrowths of archaeocyaths, encrusting dark grey Renalcis and thick rinds of fibrous calcite cement. The bioherms were prone to synsedimentary fracturing and exhibit large irregular cavities, up to 1.5 m across, lined with fibrous calcite. The buildups are isolated or in contiguous vertical succession. Mud mounds occur alone in low-energy, frequently nodular, limestone facies. Individual bioherms and bioherm complexes occur in high-energy on-shelf and shelf-margin facies. The two types also form large-scale, shallowing-upward sequences composed of basal (deep water) mud mounds grading upward into archaeocyath-calcimicrobe bioherm complexes and bioherms in cross-bedded carbonate sands. The uppermost sequence is capped by ooid grainstone and/ or fenestral to stromatolitic mudstone. The calcimicrobe and metazoan associations form the two major biotic elements which were to dominate reefs throughout much of subsequent Phanerozoic time.  相似文献   
143.
Haapaniemi, A.I., Scourse, J.D., Peck, V.L., Kennedy, H., Kennedy, P., Hemming, S.R., Furze, M.F.A., Pieńkowski, A.J., Austin, W.E.N., Walden, J., Wadsworth, E. & Hall, I.R. 2010: Source, timing, frequency and flux of ice‐rafted detritus to the Northeast Atlantic margin, 30–12 ka: testing the Heinrich precursor hypothesis. Boreas, Vol. 39, pp. 576–591. 10.1111/j.1502‐3885.2010.00141.x. ISSN 0300‐9483. Increased fluxes of ice‐rafted detritus (IRD) from European ice sheets have been documented some 1000–1500 years before the arrival of Laurentide Ice Sheet (LIS)‐sourced IRD during Heinrich (H) events. These early fluxes have become known as ‘precursor events’, and it has been suggested that they have mechanistic significance in the propagation of H events. Here we present a re‐analysis of one of the main cores used to generate the precursor concept, OMEX‐2K from the Goban Spur covering the last 30 ka, in order to identify whether the British–Irish Ice Sheet (BIIS) IRD fluxes occur only as precursors before H layers. IRD characterization and planktonic foraminiferal δ18O measurements constrained by a new age model have enabled the generation of a continuous record of IRD sources, timing, frequency and flux, and of local contemporary hydrographic conditions. The evidence indicates that BIIS IRD precursors are not uniquely, or mechanistically, linked to H events, but are part of the pervasive millennial‐scale cyclicity. Our results support an LIS source for the IRD comprising H layers, but the ambient glacial sections are dominated by assemblages typical of the Irish Sea Ice Stream. Light isotope excursions associated with H events are interpreted as resulting from the melting of the BIIS, with ice‐sheet destabilization attributed to eustatic jumps generated by LIS discharge during H events. This positive‐feedback mechanism probably caused similar responses in all circum‐Atlantic ice‐sheet margins, and the resulting gross freshwater flux contributed to the perturbation of the Atlantic Meridional Overturning Circulation during H events.  相似文献   
144.
Most models of high-alumina arc basalt petrogenesis rely heavilyon the supposition that the abundances of certain trace elements,in particular the relatively unfractionated Rare Earth Element(REE) patterns and the unusually high concentrations of K, Rb,Sr, and Ba are incompatible with a garnet-bearing subductedoceanic crustal (quartz eclogite) source rock. We have carefullyexamined this apparently unequivocal evidence in light of recentprogress on the physics of melt extraction and the heat transferand mechanics of magma ascent. The weakest element of all traceelement models involving a quartz eclogite source is the assumptionthat the element concentrations are fixed at the source andonly later modified in the near-surface environment. We expandon such models by monitoring the concentrations of REE and majorand trace elements during initial melting, ascent, and extractionof magma. This is done by combining calculated cooling curvesfor ascending magmatic bodies with high pressure phase equilibria.The amount that each phase contributes to the melt is monitoredalong with the composition of the melt and residual solids.With quartz eclogite, initial melting initiates gravitationalinstability of the entire source material (melt plus solids)before melt extraction can occur. During ascent of this mush,melting increases until the solids can be repacked to free themelt. This extraction takes place some 15–20 km abovethe slab, after about 50 per cent melting, at which point themelt has a pattern of REE and other trace element concentrationsalmost identical to those observed in high-alumina arc basalts,assuming an initial composition equivalent to altered oceaniccrust plus 5 per cent pelagic sediment. Sr abundances are theonly ones which are not well-matched by this process. The majorelement concentrations of the extracted melt also closely matchthose of high-alumina arc basalt. A similar, but less detailedevaluation of both fertile and depleted peridotite source rocksyields good agreement for the REE and other trace element concentrationsassuming a LREE-enriched source rock strongly enriched in K,Rb, Sr, and Ba. Ni, Cr, and Co abundances are satisfied onlythrough substantial low pressure fractionation of mafic phases,in particular olivine. Though not rigorously tested, such aprocess may be compatible with the observed major element concentrationsof high-alumina basalt. However, the experimentally verifiedfact that high-alumina basalts could never have been in equilibriumwith either an olivine-bearing magma or source rock eliminatesthis possibility altogether. Thus, the simultaneous considerationof the mechanics of ascent and melt extraction along with phaseequilibria clearly shows that partial melting of quartz eclogitebest satisfies the chemical constraints of major, trace, andREE characteristics of high-alumina arc basalts.  相似文献   
145.
On the Iberia Abyssal Plain (Ocean Drilling Program Site 1070),gabbroic pegmatites and related rocks (127 ± 4 Ma, U–Pbzircon) intrude upper mantle that was subsequently exposed andserpentinized during Early Cretaceous non-volcanic rifting.The pegmatites include a 3–4 m dike or sill (the ‘main’pegmatite), numerous dikelets of 1–5 cm thickness, andclasts within the overlying ophicalcite breccia. Exclusive ofrodingitization, the main pegmatite contains 40–70% calcicandesine, 25–35% kaersutitic amphibole (Mg# 60–70),5–25% augite (Mg# 70–80) and 1–2% ilmenite.The dikelets are more magnesian (Mg# up to 82 in kaersutiteand 88 in augite). Most indications are that the high Mg#s inthe dikelets reflect igneous compositions. Isotopic and elementalchemistry indicate that the pegmatite-forming melt was enrichedin incompatible elements relative to normal mid-ocean ridgebasalt, but not as enriched as Azores basalts. The amphibole-bearingplagioclase peridotites of the Iberia Abyssal Plain are an appropriatesource for the pegmatite melts. A combination of decompressionaccompanying unroofing and heating from the upwelling asthenospherebeneath the developing rift caused P–T conditions in theamphibole-bearing lithosphere to exceed the dehydration-meltingsolidus (  相似文献   
146.
The erodibility of a grain on a rough bed is controlled by, among other factors, its relative projection above the mean bed, its exposure relative to upstream grains, and its friction angle. Here we report direct measurements of friction angles, grain projection and exposure, and small-scale topographic structure on a variety of water-worked mixed-grain sediment surfaces. Using a simple analytical model of the force balance on individual grains, we calculate the distribution of critical shear stress for idealized spherical grains on the measured bed topography. The friction angle, projection, and exposure of single grain sizes vary widely from point to point within a given bed surface; the variability within a single surface often exceeds the difference between the mean values of disparate surfaces. As a result, the critical shear stress for a given grain size on a sediment surface is characterized by a probability distribution, rather than a single value. On a given bed, the crtitical shear stress distributions of different grain sizes have similar lower bounds, but above their lower tails they diverge rapidly, with smaller grains having substantially higher median critical shear stresses. Large numbers of fines, trapp.ed within pockets on the bed or shielded by upstream grains, are effectively lost to the flow. Our calculations suggest that critical shear stress, as conventionally measured, is defined by the most erodible grains, entrained during transient shear stress excursions associated with the turbulent flow; this implies a physical basis for the indeterminacy of initial motion. These observations suggest that transport rate/shear stress relationships may be controlled, in part, by the increasing numbers of grains that become available for entrainment as mean shear stress increases. They also suggest that bed textures and grain size distributions may be controlled, within the constraints of an imposed shear stress and sediment supply regime, by the influence of each size fraction on the erodibility of other grain sizes present on the bed.  相似文献   
147.
The melting relations of five metamorphosed basalts and andesites(greenstones and amphibolites), collected from the late JurassicSmartville arc complex of California, were investigated experimentallyat 800–1000? C and 1, 3, and 6. 9 kb. Dehydration-melting(no water added) experiments contained only the water structurallybound in metamorphic minerals (largely amphiboles). They yieldedmildly peraluminous to metaluminous granodioritic to trondhjemiticmelts (Na/K is a function of starting composition) similar inmajor element composition to silicic rocks in modern oceanicarcs. The dehydration melts are water-undersaturated, with,and coexist with the anhydrous residual solid (restite) assemblageplagioclase + orthopyroxene + clinopyroxene + magnetite ? ilmen-ite,with plagioclase constituting 50% of the restite mode. In thedehydration-melting experiments at 3 kb the onset of meltingoccurred between 850 and 900 ? C, as amphibole and quartz brokedown to yield pyroxenes plus melt. Total pressure is greaterthan in the dehydration-melting experiments and has little effecton melt composition or phase relations. In the water-saturated (water added, so that experiments, meltsformed at 3 kb and above are strongly peraluminous, rich inCa and poor in Fe, Mg, Ti, and K. Their compositions are unlikethose of most silicic igneous rocks. These melts coexist withthe amphibole-rich, plagioclase-poor restite assemblage amphibole+ magnetite ? clinopyroxene ? plagioclase ? ilmenite. The highlyaluminous nature of the melts and the plagioclase-poor natureof the restite both reflect the substantial contribution ofplagioclase (along with quartz) to melts in high-pressure water-saturatedsystems. Water pressure equals Ptoul in the water-saturatedexperiments and has a profound effect on both melt compositionand phase relations. At 1 kb, the water-saturated experimentsyielded melt and mineral products with some characteristicsof the dehydration-melting experiments (no amphibole at highT), and some characteristics of the 3-kb, water-saturated experiments(amphibole plus melt coexisting at lower T, elevated Al, loweredFe). As pressure is increased from 3 to 6. 9 kb, the stabilityfields of both plagioclase and clinopyroxene decrease relativeto amphibole and the Al contents of the melts increase. These experiments have important implications for the petrogenesisof low-K silicic rocks in arcs. First, dehydration melting isa viable mechanism for the formation of these rocks; water-saturatedmelting is not. Second, because of the influence of rock compositionon melt composition, low-grade metamorphic and hydrothermalprocesses that alter the alkali contents and Na/ K in arc basementterranes may have a direct impact on the petrogenesis of silicicmagmas in arcs, particularly the formation of extremely low-Ktrondhjemites. Third, the experiments predict that anhydrous,pyroxene- and plagioclase-rich ‘granulitic’ restiteassemblages should develop as a result of partial melting inarc terranes. Such assemblages occur in at least two deeplyeroded arc complexes.  相似文献   
148.
Tectonic deformation of the land surface is known to influence the gradient, water and sediment discharge and the grain-size of modern fluvial systems. Any change in these variables alters the equilibrium of a fluvial system, potentially causing a change in channel morphology. 3D seismic data from the Tertiary (Miocene) age, Upper Frio Formation, Kelsey Field, South Texas, in the US are used to examine changing fluvial channel morphology through time during a period of active growth of a rollover anticline in the hangingwall of a normal fault (the Vicksburg Fault). The studied interval varies between 22 and 47 m thick, and spans several hundred thousand years. It consists of an alternation of fluvial sandstones, overbank mudstones and coal. Seismic extractions show the evolution of sinuous fluvial channels during a phase of growth fault activity. Prior to growth, a single sinuous channel is imaged. During growth, the fluvial system became decapitated by a developing rollover anticline, and a highly sinuous drainage network formed, with frequent avulsion events, headward propagation of streams and related stream capture. Increased channel sinuosity was spatially associated with increased avulsion frequency in the area down dip to the east of the rollover anticline, more than 10 km from the active fault. More than 25 m of relative accommodation developed on the flank of the growing rollover anticline compared with on the crest. The increased channel sinuosity is interpreted as reflecting an increase in longitudinal valley slope analogous to observations made in flume experiments and modern river systems. The increase in avulsion frequency is attributed to increased aggradation as the rivers adjusted back to equilibrium grade following the increase in slope.  相似文献   
149.
The term Dimlington Stadial is proposed as a climatostratigraphic name fer the main glacial episode of the Late Devensian in Britain, in preference to stratigraphically unsatisfactory terms, such as Late Devensian Glaciation (which includes the Windermere Interstadial and the Loch Lomond Stadial), icesheet glaciation or maximum of ice expansion, that are currently in use. The name is selected from a site on the East Yorkshire coast and refers to the interval between 26,000 and 13,000 radiocarbon years B.P. Dimlington Chronozone is the formal chronostratigraphic term for the equivalent period of time, and comprises the main part of the Late Devensian Sub-stage.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号