首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251篇
  免费   4篇
测绘学   1篇
大气科学   24篇
地球物理   21篇
地质学   156篇
海洋学   15篇
天文学   3篇
综合类   1篇
自然地理   34篇
  2021年   1篇
  2020年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   15篇
  2012年   3篇
  2011年   7篇
  2010年   4篇
  2009年   6篇
  2008年   8篇
  2007年   7篇
  2006年   13篇
  2005年   2篇
  2004年   11篇
  2003年   5篇
  2002年   11篇
  2001年   5篇
  2000年   5篇
  1999年   10篇
  1998年   5篇
  1997年   10篇
  1996年   12篇
  1995年   2篇
  1994年   6篇
  1993年   6篇
  1992年   9篇
  1991年   18篇
  1990年   11篇
  1989年   3篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   8篇
  1984年   4篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   5篇
  1976年   3篇
  1973年   2篇
  1972年   2篇
  1969年   2篇
  1966年   1篇
  1964年   1篇
  1963年   1篇
排序方式: 共有255条查询结果,搜索用时 15 毫秒
61.
Observations of many debris-flow deposits on gently-sloping alluvial fans have disclosed that debris commonly is heavily loaded with coarse clastic material and contains large isolated blocks. The paper describes how debris charged with coarse granular material can transport large blocks, yet flow on gentle slopes. Experimental results of mixing sand-sized particles with a slurry of clay plus water indicate that 45–55 vol. % of a single size, and up to 64% of two selected sizes, can be added before interlocking occurs. Theoretical analysis of multi-size classes suggest that 89 to more than 95 vol. % debris can be clastic materials without significant particle interlocking. The clay fraction, even if minor, plays a critical role in determining strength properties of debris. The mixture of clay plus water provides a cohesive slurry that supports fine-grained particles within the debris, as well as reduces the effective normal stresses between the particles. The increased unit weight of the clay plus water plus fine-grained particles allows the support of coarser grained particles. The pyramiding upon the clay-water slurry continues until the entire debris mass is supported in a virtually frictionless position because of the reduced effective normal stress and the lack of particle interlocking. Thus, the ability of debris flows to support large blocks can be understood in terms of the high unit weight of the displaced debris plus the strength of the fluid phase; that is, the blocks float in the debris as a result of a small density difference between the blocks and the debris, plus the cohesive strength of the clay-water slurry. Also, the ability of coarse clastic debris to flow on gentle slopes probably is a result of poor sorting of debris-flow materials which contain minor amounts of clay. The poor sorting allows the debris to have a high density yet have essentially no interlocking of clasts. The high density of the debris reduces effective normal stresses between clasts, thereby reducing apparent friction of the mixture.  相似文献   
62.
Cross-bedded, cool-water, bioclastic limestones of the Te Kuiti Group on the North Island of New Zealand are composed primarily of bryozoans, echinoderms, and benthic foraminifers. Their prominent, large-scale, unidirectional cross-stratification is interpreted as produced by migrating subaqueous dunes on the floor of a 50–100 km wide, north-east-trending seaway in water depths of 40–60 m. These dunes are thought to have developed in response to strong, seaway-parallel, tidal currents combined with a north-east-directed, set-up or oceanic current. Cross-stratification is organized into four hierarchical levels: (1) cross-lamination; (2) first-order sets; (3) second-order sets; and (4) cross-stratified successions. The levels are based on increasing degrees of internal complexity. Distinct attributes such as internal organization, cross-set thickness, foreset shape, and lower bounding-surface shape are used to describe and interpret the cross-stratification. All these attributes are here integrated in a new and expanded classification of unidirectional cross-stratification that emphasizes flow and bedform dynamics rather than overall set shape. Individual cross-stratified successions are interpreted to have formed by dunes with varying sinuosity, superposition, and flow history, under conditions of different current strength but constant sediment production. Horizontally bedded successions are the result of robust, active dune fields that grew during times of vigorous sediment transport. Formset successions were produced from large compound dunes and are the expression of languid and decaying dune fields that developed during times of decreasing sediment transport. These decaying dunes were gradually smothered by continuously and locally produced bioclastic sediment. Formset cross-stratified successions are most likely to develop in carbonates, where the sediment is produced in place, than in terrigenous clastics where the sediment is imported.  相似文献   
63.
Phenocryst compositions and mineral–melt equilibria inthe mildly alkalic basalts from the 25 Ma Mont Crozier sectionon the Kerguelen Archipelago are used to estimate the depthsat which magmas stalled and crystallized and to constrain therole of crustal structure in the evolution of magmas producedby the Kerguelen mantle plume. The Crozier section, of nearly1000 m height, consists of variably porphyritic flows (up to21 vol. % phenocrysts), dominated by plagioclase ± clinopyroxene± olivine ± Fe–Ti oxides. Feldspars showan extreme range of compositions from high-Ca plagioclase (An88)to sanidine and variable textures that are related to extensivefractionation, degassing, and mixing in relatively low-pressure(sub-volcanic) magma chambers. Although clinopyroxene is a minorphenocryst type (0–3 vol. %), its non-quadrilateral components,principally Al (1·9–8·6 wt % Al2O3), varywidely. The results of clinopyroxene–liquid thermobarometryand clinopyroxene structural barometry indicate that the Croziermagmas crystallized at pressures ranging from  相似文献   
64.
Lower Cretaceous (Hauterivian) bioclastic sandstone turbidites in the Scapa Member (North Sea Basin) were extensively cemented by low-Mg calcite spars, initially as rim cements and subsequently as concretions. Five petrographically distinct cement stages form a consistent paragenetic sequence across the Scapa Field. The dominant and pervasive second cement stage accounts for the majority of concretions, and is the focus of this study. Stable-isotope characterization of the cement is hampered by the presence of calcitic bioclasts and of later cements in sponge spicule moulds throughout the concretions. Nevertheless, trends from whole-rock data, augmented by cement separates from synlithification fractures, indicate an early calcite δ18O value of+0·5 to -1·5‰ PDB. As such, the calcite probably precipitated from marine pore fluids shortly after turbidite deposition. Carbon isotopes (δ13C=0 to -2‰ PDB) and petrographic data indicate that calcite formed as a consequence of bioclastic aragonite dissolution. Textural integrity of calcitic nannoplankton in the sandstones demonstrates that pore fluids remained at or above calcite saturation, as expected for a mineral-controlled transformation. Electron probe microanalyses demonstrate that early calcite cement contains <2 mol% MgCO3, despite its marine parentage. Production of this cement is ascribed to a combination of an elevated aragonite saturation depth and a lowered marine Mg2+/Ca2+ ratio in early Cretaceous ‘calcite seas’, relative to modern oceans. Scapa cement compositions concur with published models in suggesting that Hauterivian ocean water had a Mg2+/Ca2+ ratio of ≤1. This is also supported by consideration of the spatial distribution of early calcite cement in terms of concretion growth kinetics. In contrast to the dominant early cement, late-stage ferroan, 18O-depleted calcites were sourced outwith the Scapa Member and precipitated after 1–2 km of burial. Our results emphasize that bioclast dissolution and low-Mg calcite cementation in sandstone reservoirs should not automatically be regarded as evidence for uplift and meteoric diagenesis.  相似文献   
65.
Reactions in Amphibolite, Greenschist and Blueschist   总被引:2,自引:0,他引:2  
Mineral assemblages in which chlorite [CHL], epidote [EPI],clinoamphibole [AMP], plagioclase [PLG] and quartz [QTZ] aremajor phases are characteristic of many low-grade mafic schists.The possible heterogeneous reactions in such an assemblage maybe separated into two types, exchange reactions and net-transferreactions. Only the latter alter significantly the modal proportionsof the minerals. A set of linearly independent reactions defines a reaction spaceof as many dimensions as there are independent reactions. Thespace defined by the net-transfer reactions alone is a sub-spacethat can be portrayed in three dimensions for the above assemblage.A procedure is presented herein that gives a set of independentreactions that may be taken as basis reactions for definingsuch a reaction space. All other reactions that can be writtenfor this assemblage, as well as observed whole-rock reactions,can be portrayed as vectors in these reaction spaces. Thesevectors connect the region (mineral facies) accessible to theabove assemblage. The whole-rock reactions of Laird (1980) relatinggreenschist, blueschist and various low-grade amphibolites fromVermont, provide informative examples, as do the whole-rockexperiments of Liou et al. (1974). Although reaction spaces apply to both equilibrium and disequilibriumassemblages the reactions selected as basis vectors correspondone-for-one to the chemical conditions for equilibrium thatmust obtain in any fully equilibrated assemblage. The set selectedis one that provides maximum sensitivity for geothermometric,geobarometric and geohygrometric purposes.  相似文献   
66.
Detailed geochronological, structural and petrological studies reveal that the geological evolution of the Field Islands area, East Antarctica, was substantially similar to that of the adjacent Archaean Napier Complex, though with notable differences in late and post Archaean times. These differences reflect the area's proximity to the Proterozoic Rayner Complex and consequent vulnerability to tectonic process involved in the formation of the latter. Distinctive structural features of the Field Islands are (1) consistent development of a discordant, pervasive S3 axial-plane foliation; (2) re-orientation of S3 axial planes to approximate to the subsequent E-W tectonic trend of the nearby Rayner Complex; (3) selective retrogression by a post-D3 static thermal overprint; and (4) relatively common development of retrogressive, E-W-trending, mylonitic shear zones. Peak metamorphic conditions in excess of 800°C at 900 ± 100 M Pa (9 kbar) were attained at one locality following, but probably close to the time of D2 folding. D3 took place in late Archaean times when metamorphic temperatures were about 650°C and pressures were about 600 MPa (6 kbar). Later, temperatures of 600 ± 50°C and pressures of 700 MPa (7kbar) were attained in an amphibolite-facies event, presumably associated with the widespread granulite to amphibolite-facies metamorphism and intense deformation involved in the formation of the Rayner Complex at about 1100 Ma. The area was subsequently subjected to near-isothermal uplift. Rb-Sr isotopic data indicate that the pervasive D3 fabric developed at about 2400–2500 Ma, and this age can be further refined to 2456+8-5 Ma by concordant zircon analyses from a syn-D3 pegmatite. All zircons were affected by only minor (<7–10%) Pb loss and/or new zircon growth during the Rayner event at about 1100Ma. Thus the 450–850 μg/gU concentrations of these zircons were too low to cause sufficient lattice damage over the 1350 Ma (from 2450 Ma) for excessive Pb to be lost during the 1100 Ma event. The emplacement of pegmatite at 522 ± 10 Ma substantially changed the Rb-Sr systematics of the only analysed rock that developed a penetrative fabric during the 1100 Ma event. Monazite in this pegmatite contains an inherited Pb component, which probably resides in small opaque inclusions. A good correlation is found between Rb-Sr total-rock ages and rock fabric. U-Pb zircon intercepts with concordia also mostly correspond to known events. However, in one example a near perfect alignment of zircon analyses, probably developed by mixing of unrelated components, produced concordia intercepts that appear to have no direct geochronological significance.  相似文献   
67.
The dynamics of suspended particles within a fjord's estuarine circulation are investigated and the results compared with larger non-enclosed prodelta environments. In the upper prodelta, the seaward-flowing river plume flows over the ambient marine water depositing much of the initial riverine suspended load. Sedimentation is dominated by coarse silt and fine-grained sand particles with coarseness determined by the tidal and fluvial stage. Particles less than 10 μn have similar settling velocities regardless of size because they settle in flocs: the settling velocity at a water depth of 5 m is 30 m day-1 and increases with depth so that at 30 m the particles settle at 100 m day-1. For larger particles, the downward settling velocity enhancement due to flocculation decreases with increasing grain size. Hydraulic sorting allows the preferential settling of feldspar and quartz over mica. Particle dynamics in the lower prodelta are dependent on the character of the freshwater wedge that thins seaward of the upper prodelta. The vertical flux of particles is controlled by biogeochemical interactions such as pelletization of fine particles and flocculation (which occurs within rather than below the surface layer in contrast to the upper prodelta). The pellets are produced by indiscriminate filter feeding zooplankton. Across the lower prodelta the suspensate character, recognized in the composition of both flocs and pellets, changes from a dominance of mineral grains to that of autochthonous organic matter. The interaction of bacteria with the suspended particles increases with depth and seaward distance. At depth, the mucoid filaments form stable interconnecting webs. Particle concentration in the surface layer decreases at a rate proportional to the negative one-half and three-halves power of the distance seaward over the upper and lower prodelta, respectively. This relationship is hypothesized as being universal for large marine deltas dominated by buoyancy flow dynamics, regardless of the levels of initial riverine particle concentration or their composition.  相似文献   
68.
Oxygen isotopic compositions of chert and calcite cements in the Lake Valley Formation indicate that these diagenetic features cannot be equilibrium co-precipitates in spite of their coexistence in the same interstices. Petrography of megaquartz and non-ferroan calcite cements indicates that both are original precipitates that formed during pre-Pennsylvanian time at shallow burial depths (< 215m) implying precipitation temperatures less than 30°C. Under these constraints the δ18Os of megaquartz (mean =+27.00/00 SMOW; range =+ 24.8 to + 28.90/00) and calcite (mean =+ 28.00/00 SMOW; range =+ 27.3 to + 28.40/00) are best interpreted as unaltered since precipitation; thus, they must reflect the oxygen isotopic composition of pre-Pennsylvanian pore waters. Microquartz and chalcedony are interpreted to have formed from recrystallization of pre-Pennsylvanian opal-CT precursors, and therefore probably re-equilibrated during recrystallization in late or post-Mississippian time. We propose a model integrating the isotopic data with regional petrographic and sedimentological data that explains the greater consistency and generally greater δ18Os values of the calcites compared to those of the cherts. This model is one of chertification and calcite cementation in a regional meteoric phreatic ground-water system, the seaward terminus of which moved southward during lowering of pre-Pennsylvanian sea level. The calcite cements and some of the opal-CT precursor to microquartz and chalcedony are interpreted to have formed in the more seaward portions of the groundwater system. The megaquartz precipitated in the more inland parts of the phreatic groundwater system where rainfall was isotopically lighter and more variable. As such, the δ18Os of the megaquartz reflect the isotopic composition of groundwaters in areas undersaturated with respect to calcite.  相似文献   
69.
Surging of the southwestern part of the Laurentide Ice Sheet   总被引:1,自引:0,他引:1  
The southwestern part of the Laurentidc Ice Sheet, in central North America, repeatedly surged during the last part of the Wisconsin Glaciation. Evidence includes the extreme lobation of the ice margin, the gentle slopes of lateral moraines and other marginal features, a radiocarbon chronology indicating extremely rapid marginal advance and retreat, and the abundance of supraglacial flow till. Rapid ice movement was caused by subglacial water and was probably limited to areas of slowly permeable substrate, which slowed the escape of the water.  相似文献   
70.
Palaeosols associated with exposure surfaces in Mississippian platform carbonate sequences in Britain invariably show evidence for later alteration by sea water. These alteration effects can be attributed to flooding of the emergent platforms during transgressions that terminated exposure surface development. A study of 230 palaeosol profiles representing 60 stratigraphic levels has revealed a two fold division of these marine hydromorphic effects. Palaeosols in ramp sequences (Chadian-Arundian stages) are capped by ferroan dolomite horizons with carbonized rootlets, pyrite and thin coals. The ferroan dolomites exhibit δ13C and δ18O values indicative of formation in brackish waters. These are interpreted as coastal marshes that developed landward of a transgressive shoreline. Younger Asbian-Brigantian palaeosols lack these dolomites but have been extensively pyritised. The pyrite also developed through marine hydromorphic alteration but flooding was relatively instantaneous over the flat topped platforms. These differences in flooding history reflect both different platform configuration and more rapid transgressions during the Asbian-Brigantian, likely a result of glacio-eustatic effects. Flooding characteristics of the Asbian-Brigantian platforms differ from those associated with late Cainozoic examples, apparently because complete platform rims were not developed. Similar mineralogical alteration effects are likely to be common in other platform sequences in the geological record, but have not been documented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号