首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102627篇
  免费   1176篇
  国内免费   618篇
测绘学   2543篇
大气科学   7702篇
地球物理   21055篇
地质学   34565篇
海洋学   8666篇
天文学   23262篇
综合类   244篇
自然地理   6384篇
  2021年   781篇
  2020年   972篇
  2019年   998篇
  2018年   1933篇
  2017年   1809篇
  2016年   2463篇
  2015年   1573篇
  2014年   2435篇
  2013年   5058篇
  2012年   2561篇
  2011年   3675篇
  2010年   3227篇
  2009年   4612篇
  2008年   4034篇
  2007年   3819篇
  2006年   3740篇
  2005年   3040篇
  2004年   3152篇
  2003年   2874篇
  2002年   2805篇
  2001年   2493篇
  2000年   2428篇
  1999年   2093篇
  1998年   2097篇
  1997年   2013篇
  1996年   1794篇
  1995年   1718篇
  1994年   1565篇
  1993年   1412篇
  1992年   1331篇
  1991年   1215篇
  1990年   1456篇
  1989年   1242篇
  1988年   1111篇
  1987年   1384篇
  1986年   1212篇
  1985年   1515篇
  1984年   1739篇
  1983年   1646篇
  1982年   1480篇
  1981年   1463篇
  1980年   1246篇
  1979年   1190篇
  1978年   1276篇
  1977年   1143篇
  1976年   1106篇
  1975年   1068篇
  1974年   1038篇
  1973年   1073篇
  1972年   651篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
181.
Limnological changes in Hamilton Harbour, Lake Ontario, over the Holocene were investigated by using proxy evidence from diatoms and other siliceous microfossils in a radiometrically dated sediment core (HH26comp), together with environmental data derived from sediment pollen and oxygen and carbon isotope analyses. The evidence demonstrates that the site of Hamilton Harbour has changed over the past 8300 y from a shallow, separate waterbody, to a deep embayment of Lake Ontario. The earliest evidence, from 8300 BP to 7000 BP, is of a mesotrophic pond of moderate alkalinity, warmer than present, and probably with an extensive marginal wetland. An initial transitory connection with the rising water level of Lake Ontario was established at c. 7000 BP, possibly via a deep outlet channel. This connection is 2000 y earlier then previously estimated. Permanent confluence with Lake Ontario was established at c. 6200 BP, causing a decline in inferred trophic level and water temperatures. Microfossils reach a minimum at 4400 BP coincident with the Nipissing Flood. Decreased mixing of Lake Ontario water from about 4000 BP following the Nipissing Flood highstand is evidenced in isotopic and diatom data. Three isolated shifts in the diatom spectrum at c. 4900 BP, 4500 BP, and 3500 BP may be associated with extreme turbidity or storm deposit events. Between 3200 BP and 280 BP, Hamilton Harbour was evidently a moderately alkaline embayment of Lake Ontario, oligotrophic to mesotrophic, and relatively cooler than present. The final 280 y sedimentary record reveals the magnitude of anthropogenically induced changes to the harbour, including eutrophication and organic pollution.  相似文献   
182.
183.
An ephemeral estuarine turbidity maximum (ETM) occurs at high water in the macrotidal Taf estuary (SW Wales, United Kingdom). A new mechanism of ETM formation, due to resuspension and advection of material by flood tidal currents, is observed that differs from classical mechanisms of gravitational circulation and tidal pumping. The flood tide advances across intertidal sand flats in the main body of the estuary, progressively entraining material from the rippled sands. Resuspension creates, a turbid front that has suspended sediment concentrations (SSC) of about 4,000 mg I−1 by the time it reaches its landward limit which is also the landward limit of salt penetration. This turbid body constitutes the ETM. Deposition occurs at high slack water but the ETM retains SSC values up to 800 mg I−1, 1–2 orders of magnitude greater than ambient SSC values in the river and estuarine waters on either side. The ETM retreats down the estuary during the ebb; some material is deposited thinly across emergent intertidal flats and some is flushed out of the estuary. A new ETM is generated by the next flood tide. Both location and SSC of the ETM scale on Q/R3 where Q is tidal range and R is river discharge. The greatest expression of the ETM occurs when a spring tide coincides with low river discharge. It does not form during high river discharge conditions and is poorly developed on neap tides. Particles in the ETM have effective densities (120–160 kg m−3) that are 3–4 times less than those in the main part of the estuary at high water. High chlorophyll concentrations in the ETM suggest that flocs probably originate from biological production in the estuary, including production on the intertidal sand flats.  相似文献   
184.
Measurements of velocity, salinity, and suspended solids concentration have been used to investigate the intra-tidal variation of vertical and transverse shear-induced dispersion. For the study research the interaction of the longitudinal density gradient and vertical shear during the early part of the ebb tide accounted for much of the net longitudinal dispersion of solute landward. The same mechanism also is shown to lead to a net particulate transport landward. The landward flux, however, takes place during the flood tide. The field data are also used to elucidate the tidally averaged tidal pumping mechanism.  相似文献   
185.
Holocene climate modes are identified by the statistical analysis of reconstructed sea surface temperatures (SSTs) from the tropical and North Atlantic regions. The leading mode of Holocene SST variability in the tropical region indicates a rapid warming from the early to mid Holocene followed by a relatively weak warming during the late Holocene. The dominant mode of the North Atlantic region SST captures the transition from relatively warm (cold) conditions in the eastern North Atlantic and the western Mediterranean Sea (the northern Red Sea) to relatively cold (warm) conditions in these regions from the early to late Holocene. This pattern of Holocene SST variability resembles the signature of the Arctic Oscillation/North Atlantic Oscillation (AO/NAO). The second mode of both tropical and North Atlantic regions captures a warming towards the mid Holocene and a subsequent cooling. The dominant modes of Holocene SST variability emphasize enhanced variability around 2300 and 1000 years. The leading mode of the coupled tropical-North Atlantic Holocene SST variability shows that an increase of tropical SST is accompanied by a decrease of SST in the eastern North Atlantic. An analogy with the instrumental period as well as the analysis of a long-term integration of a coupled ocean-atmosphere general circulation model suggest that the AO/NAO is one dominant mode of climate variability at millennial time scales.  相似文献   
186.
Municipal activated sludge was cultivated in a medium composed of formaldehyde, glucose and mineral salt. By passages with increasing formaldehyde content a bacterial culture was selected which remained active also at initial concentrations of 1 g/1 formaldehyde. With this culture, formaldehyde and glucose were oxidized simultaneously to formate and gluconate, which subsequently served simultaneously as substrate for the growth of bacteria. Glucose alone was also oxidized to gluconate, which then was used as substrate for growth. Formaldehyde alone was only oxidized. If the actual formaldehyde concentration was kept low, however, by fed-batch cultivation, it was assimilated also through formate formation. The biochemical background and the importance of the findings for the purification of formaldehyde-containing wastewaters are discussed.  相似文献   
187.
188.
The water cycle over the Amazon basin is a regulatory mechanism for regional and global climate. The atmospheric moisture evaporated from this basin represents an important source of humidity for itself and for other remote regions. The deforestation rates that this basin has experienced in the past decades have implications for regional atmospheric circulation and water vapor transport. In this study, we analyzed the changes in atmospheric moisture transport towards tropical South America during the period 1961–2010, according to two deforestation scenarios of the Amazon defined by Alves et al. (Theor Appl Climatol 100(3-4):337–350, 2017). These scenarios consider deforested areas of approximately 28% and 38% of the Amazon basin, respectively. The Dynamic Recycling Model is used to track the transport of water vapor from different sources in tropical South America and the surrounding oceans. Our results indicate that under deforestation scenarios in the Amazon basin, continental sources reduce their contributions to northern South America at an annual scale by an average of between 40 and 43% with respect to the baseline state. Our analyses suggest that these changes may be related to alterations in the regional Hadley and Walker cells. Amazon deforestation also induces a strengthening of the cross-equatorial flow that transports atmospheric moisture from the Tropical North Atlantic and the Caribbean Sea to tropical South America during the austral summer. A weakening of the cross-equatorial flow is observed during the boreal summer, reducing moisture transport from the Amazon to latitudes further north. These changes alter the patterns of precipitable water contributions to tropical South America from both continental and oceanic sources. Finally, we observed that deforestation over the Amazon basin increases the frequency of occurrence of longer dry seasons in the central-southern Amazon (by between 29 and 57%), depending on the deforestation scenario considered, as previous studies suggest.  相似文献   
189.
The extent of agreement amongst current global climate models (GCMs) on the global pattern of rainfall change simulated under enhanced greenhouse conditions is assessed. We consider the results of five experiments which use a simple mixed layer ocean formulation and five which use a fully dynamic ocean model (coupled experiments). For many regions of the northern hemisphere there is strong agreement amongst both mixed layer and coupled experiments on the sign of simulated rainfall change. However, in the southern hemisphere there are large, and apparently systematic, differences between the coupled and mixed layer experiments. In particular, whereas the mixed layer experiments agree on simulated rainfall increase in summer in the tropics and subtropics of the Australian sector, the coupled experiments agree (although more weakly) on rainfall decreases. These differences appear to relate to the much reduced warming simulated by the coupled experiments in the high latitudes of the southern hemisphere. However, recent oceanographie evidence suggests that this suppressed warming may be considerably overestimated. We conclude therefore that despite the in-principle advantages of coupled models, it may be too soon to base some regionally specific climate change scenarios solely on the results of coupled experiments.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号