Ozone has been observed in elevated concentrations by satellites over areas previously believed to be background. There is meteorological evidence, that these ozone plumes found over the Atlantic Ocean originate from vegetation fires on the African continent.In a previous study (DECAFE-88), we have investigated ozone and assumed precursor compounds over African tropical forest regions. Our measurements revealed large photosmog layers at altitudes from 1.5 to 4 km. Both chemical and meteorological evidence point to savanna fires up to several thousand km upwind as sources.Here we describe ozone mixing ratios observed over western Africa and compare ozone production ratios from different field measurement campaigns related to vegetation burning. We find that air masses containing photosmog ingredients require several days to develop their oxidation potential, similar to what is known from air polluted by emissions from fossil fuel burning. Finally, we estimate the global ozone production due to vegetation fires and conclude that this source is comparable in strength to the stratospheric input. 相似文献
We have measured the abundance and isotopic composition of xenon in petroleum samples from the Shell Bullwinkle Field off
the coast of Louisiana. We used an oxidation and purification procedure designed to insure complete extraction and clean up
of xenon from the petroleum.
The xenon isotopic composition was found to be similar to the atmospheric value for one petroleum sample. While the results
of the second sample suggest possible enrichment of the heavier isotopes, the errors associated with these excesses preclude
a definitive statement to that effect. No monoisotopic enrichment in129Xe was detected in either sample, the presence of which might have allowed us to deduce the petroleum age. Our results represent
only the second xenon measurement from petroleum, and the concentrations are within the range of values published in the earlier
report. 相似文献
Thermal evolution models for carbonaceous asteroids that use new data for permeability, pore volume, and water circulation as input parameters provide a window into what are arguably the earliest habitable environments in the Solar System. Plausible models of the Murchison meteorite (CM) parent body show that to first-order, conditions suitable for the stability of liquid water, and thus pre- or post-biotic chemistry, could have persisted within these asteroids for tens of Myr. In particular, our modeling results indicate that a 200-km carbonaceous asteroid with a 40% initial ice content takes almost 60 Myr to cool completely, with habitable temperatures being maintained for ∼24 Myr in the center. Yet, there are a number of indications that even with the requisite liquid water, thermal energy sources to drive chemical gradients, and abundant organic “building blocks” deemed necessary criteria for life, carbonaceous asteroids were intrinsically unfavorable sites for biopoesis. These controls include different degrees of exothermal mineral hydration reactions that boost internal warming but effectively remove liquid water from the system, rapid (1-10 mm yr−1) inward migration of internal habitable volumes in most models, and limitations imposed by low permeabilities and small pore sizes in primitive undifferentiated carbonaceous asteroids. Our results do not preclude the existence of habitable conditions on larger, possibly differentiated objects such as Ceres and the Themis family asteroids due to presumed longer, more intense heating and possible long-lived water reservoirs. 相似文献
The regionally extensive, coarse-grained Bakhtiyari Formation represents the youngest synorogenic fill in the Zagros foreland basin of Iran. The Bakhtiyari is present throughout the Zagros fold-thrust belt and consists of conglomerate with subordinate sandstone and marl. The formation is up to 3000 m thick and was deposited in foredeep and wedge-top depocenters flanked by fold-thrust structures. Although the Bakhtiyari concordantly overlies Miocene deposits in foreland regions, an angular unconformity above tilted Paleozoic to Miocene rocks is expressed in the hinterland (High Zagros).
The Bakhtiyari Formation has been widely considered to be a regional sheet of Pliocene–Pleistocene conglomerate deposited during and after major late Miocene–Pliocene shortening. It is further believed that rapid fold growth and Bakhtiyari deposition commenced simultaneously across the fold-thrust belt, with limited migration from hinterland (NE) to foreland (SW). Thus, the Bakhtiyari is generally interpreted as an unmistakable time indicator for shortening and surface uplift across the Zagros. However, new structural and stratigraphic data show that the most-proximal Bakhtiyari exposures, in the High Zagros south of Shahr-kord, were deposited during the early Miocene and probably Oligocene. In this locality, a coarse-grained Bakhtiyari succession several hundred meters thick contains gray marl, limestone, and sandstone with diagnostic marine pelecypod, gastropod, coral, and coralline algae fossils. Foraminiferal and palynological species indicate deposition during early Miocene time. However, the lower Miocene marine interval lies in angular unconformity above ~ 150 m of Bakhtiyari conglomerate that, in turn, unconformably caps an Oligocene marine sequence. These relationships attest to syndepositional deformation and suggest that the oldest Bakhtiyari conglomerate could be Oligocene in age.
The new age information constrains the timing of initial foreland-basin development and proximal Bakhtiyari deposition in the Zagros hinterland. These findings reveal that structural evolution of the High Zagros was underway by early Miocene and probably Oligocene time, earlier than commonly envisioned. The age of the Bakhtiyari Formation in the High Zagros contrasts significantly with the Pliocene–Quaternary Bakhtiyari deposits near the modern deformation front, suggesting a long-term (> 20 Myr) advance of deformation toward the foreland. 相似文献
Abstract— Fayalitic olivine (Fa54–94) is a ubiquitous component in the matrix of Krymka (LL3.1) as well as in other highly unequilibrated chondrites (ordinary and carbonaceous). In Krymka, the fayalitic olivine has an unusual anisotropic platy morphology that occurs in at least five types of textural settings that can be characterized as: (1) isolated platelets, (2) clusters of platelets, (3) euhedral to subhedral crystals, (4) overgrowths of platelets on forsteritic olivine, and (5) fluffy (porous) aggregates. From transmission electron microscope (TEM) investigation, the direction of elongation of the platy olivine overgrowths on forsteritic olivine substrates is along the c axis and in most cases it corresponds with the c axis of the substrate olivine, which suggests that the fayalitic olivine grew in this unusual morphology and is not a replacement product of preexisting material. The fayalitic olivine in the matrix of Krymka is compositionally similar to olivine with platy morphology in the matrix of some CV3 chondrites and both have similar Fe/Mn ratios, but important morphological differences indicate that their relationship needs to be explored further. Textural and compositional data indicate that the fayalitic olivine in the matrix of Krymka, as well as in some other unequilibrated ordinary chondrites, formed prior to final lithification of the meteorite and probably prior to parent body accretion. We find that formation of the fayalitic olivine by vapor-solid growth provides the best explanation for our observations and data and is the only feasible mechanism for the formation of fayalitic olivine in the matrix of Krymka. We propose that the fayalitic olivine formed by vaporization and recondensation of olivine rich-dust, during a period of enhanced dust/gas ratio in the nebula. 相似文献
Three ice cores and a set of snow pit samples collected on James Ross Island, Antarctic Peninsula, in 1979, 1981 and 1991 have been analyzed for water stable isotope content D or 18O (isotopic temperature) and major chemical species. A reliable and detailed chronological scale has been established first for the upper 24.5 m of water equivalent (1990–1943) where various data sets can be compared, then extended down to 59.5 m of water equivalent (1847) with the aid of seasonal variations and the sulphate peak reflecting the 1883 Krakatoa volcanic eruption. At James Ross Island, sea-salt aerosol is generally produced by ice-free marine surfaces during the summer months, although some winter sea-salt events have been observed. For the upper part of the core (1990–1943), correlations (positive or negative) were calculated between isotopic temperature, chloride content (a sea-salt indicator), sea-ice extent, regional atmospheric temperature changes and atmospheric circulation. The D and chloride content correlation was then extended back to 1847, making it possible to estimate decadal sea-ice cover fluctuations over the study period. Our findings suggest that ice-core records from James Ross Island reflect the recent warming and sea-ice decrease trends observed in the Antarctic Peninsula area from the mid-1940s. 相似文献
Abstract— We measured the concentrations of 10Be, 26Al, 36Cl, 41Ca and 14C in the metal and/or stone fractions of 27 Antarctic chondrites from Frontier Mountain (FRO), including two large H‐chondrite showers. To estimate the pre‐atmospheric size of the two showers, we determined the contribution of neutron‐capture produced 36Cl (half‐life = 3.01 times 105 years) and 41Ca (1.04 times 105 years) in the stone fraction. The measured activities of neutron‐capture 36Cl and 41Ca, as well as spallation produced 10Be and 26Al, were compared with Monte Carlo‐based model calculations. The largest shower, FRO 90174, includes eight fragments with an average terrestrial age of (100 ± 30) × 103 years; the neutron‐capture saturation activities extend to 27 dpm/kg stone for 36Cl and 19 dpm/kg stone for 41Ca. The concentrations of spallation produced 10Be, 26Al and 36Cl constrain the radius (R) to 80–100 cm, while the neutron‐capture 41Ca activities indicate that the samples originated from the outer 25 cm. With a pre‐atmospheric radius of 80–100 cm, FRO 90174 is among the largest of the Antarctic stony meteorites. The large pre‐atmospheric size supports our hypothesis that at least 50 of the ~150 classified H5/H6‐chondrites from the Frontier Mountain stranding area belong to this single fall; this hypothesis does not entirely account for the high H/L ratio at Frontier Mountain. The smaller shower, FRO 90001, includes four fragments with an average terrestrial age of (40 ± 10) × 103 years; they contain small contributions of neutron‐capture 36Cl, but no excess of 41Ca. FRO 90001 experienced a complex exposure history with high shielding conditions in the first stage (150 < R < 300 cm) and much lower shielding in the second stage (R < 30 cm), the latter starting ~1.0 million years (Ma) ago. Based on the measured 10Be/21Ne and 26Al/21Ne ratios, the cosmic‐ray exposure ages of the two showers are 7.2 ± 0.5 Ma for FRO 90174 and 8 ± 1 Ma for FRO 90001. These ages coincide with the well‐established H‐chondrite peak and corroborate the observation that the exposure age distribution of FRO H‐chondrites is similar to that of non‐Antarctic falls. In addition, we found that corrections for neutron‐capture 36Ar (from decay of 36Cl) result in concordant 21Ne and 38Ar exposure ages. 相似文献