首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69184篇
  免费   1253篇
  国内免费   510篇
测绘学   1735篇
大气科学   5486篇
地球物理   14981篇
地质学   22368篇
海洋学   5856篇
天文学   15556篇
综合类   155篇
自然地理   4810篇
  2021年   416篇
  2020年   548篇
  2019年   544篇
  2018年   1085篇
  2017年   1060篇
  2016年   1580篇
  2015年   1156篇
  2014年   1586篇
  2013年   3453篇
  2012年   1661篇
  2011年   2442篇
  2010年   2080篇
  2009年   3037篇
  2008年   2757篇
  2007年   2471篇
  2006年   2529篇
  2005年   2179篇
  2004年   2286篇
  2003年   2105篇
  2002年   2007篇
  2001年   1816篇
  2000年   1769篇
  1999年   1533篇
  1998年   1529篇
  1997年   1511篇
  1996年   1290篇
  1995年   1229篇
  1994年   1115篇
  1993年   1020篇
  1992年   970篇
  1991年   826篇
  1990年   1036篇
  1989年   870篇
  1988年   769篇
  1987年   944篇
  1986年   832篇
  1985年   1034篇
  1984年   1202篇
  1983年   1142篇
  1982年   1040篇
  1981年   994篇
  1980年   851篇
  1979年   831篇
  1978年   883篇
  1977年   803篇
  1976年   766篇
  1975年   713篇
  1974年   714篇
  1973年   733篇
  1972年   455篇
排序方式: 共有10000条查询结果,搜索用时 20 毫秒
881.
882.
The Eder unit in the Carnic Alps, which is situated immediately south of the Periadriatic lineament (PL), represents a fault-bounded block consisting of a low-grade (up to 400?°C, indicated by epizonal illite “crystallinity” values, recrystallized quartz, and non-recrystallized white mica) metamorphic Paleozoic metasedimentary sequence. Until now, it has been assumed to represent a separate Variscan nappe. The rocks of the Eder unit show a strong E- to W-oriented stretching lineation on steep foliation planes (D1) subparallel to the PL. D1 structures originated near the temperature peak of metamorphism, and shear sense indicators show dextral ductile shear parallel to the PL. Tight mesoscale D2 folds formed on the cooling path. K–Ar and Ar–Ar ages from newly formed white mica cluster around 32–28 and 18–13 Ma and suggest a two-stage Tertiary history of the Eder unit. We interpret the Eder unit as a fault-bounded block formed during Oligocene large-scale dextral shearing along the PL (near Tmax) and exhumed in mid-Miocene times during another phase of activity along the PL. Its nature as a separate Variscan nappe is questioned.  相似文献   
883.
Trace metal dynamics in a seasonally anoxic lake   总被引:1,自引:0,他引:1  
Selected results are presented from a detailed 12-month study of trace metals in a seasonally anoxic lake. Dissolved concentrations of Fe, Mn, organic carbon, Cd, Cu, Pb, Zn, and pH were determined in the water column and the interstitial waters on 39 occasions. Trace metal concentrations remained low throughout the year in both water column and pore waters. There was evidence for some remobilization at the sediment-water interface but sediments deeper than 3 cm acted as a sink throughout the year. Variations in the water concentrations were largely associated with increased loading during periods of heavy rainfall. During the summer, concentrations of Cu and Zn in the waters overlying the sediments were enhanced by release from decomposing algal material. Similarly, enhanced concentrations of Cd, Cu, Pb, and Zn were observed during periods of much reduced mixing during ice-cover. Although there were large seasonal variations in the concentrations of dissolved and particulate Fe and Mn, there were no comparable changes in the concentrations of trace metals.  相似文献   
884.
The Miocene-Oligocene volcanism of this region is part of the larger Tertiary volcanic province found throughout E. Australia. Within the S.E. Queensland region, the volcanism is strongly bimodal, and has emanated from six major centres, and many additional smaller centres. The mafic lavas (volumetrically dominant) range continuously from ne-normative through to Q-normative and are predominantly andesine-normative; Mg/Mg+Fe (atomic ratios range from 30–60; K2O ranges from 0.42–2.93%, and TiO2 from 0.81–3.6%.Phenocryst contents are low (averaging 6.7 vol.%), and comprise olivine (Fa18–75; Cr-spinel inclusions occur locally in Mg-rich phenocrysts), plagioclase (An25–68), and less commonly augite, which is relatively aluminous in lavas of the Springsure volcanic centre. Very rare aluminous bronzite occurs in certain Q-normative lavas. Groundmass minerals comprise augite, olivine (Fa33–77), feldspar (ranging from labradorite through to anorthoclase and sanidine), Fe-Ti oxides, and apatite. Within many of the Q-normative lavas, extensive development of subcalcic and pigeonitic pyroxenes occurs, and also relatively rarely orthopyroxene. Mineralogically, the ne- and ol-normative lavas, and some of the Q-normative lavas are indistinguishable, and in view of the gradations in chemistry, the term hawaiite has been extended to cover these lavas. The term tholeiitic andesite is used to describe the Q-normative lavas containing Ca-poor pyroxenes as groundmass phases.Megacrysts of aluminous augite, aluminous bronzite, olivine, ilmenite, and spinel sporadically occur within the lavas, and their compositions clearly indicate that they are not derived from the Upper Mantle. Rare lherzolite xenoliths are also found.The petrogenesis of these mafic lavas is approached by application of the thermodynamic equilibration technique of Carmichael et al. (1977), utilizing three parental mineral assemblages that could have been in equilibrium with the magmas at P and T. The models are: (a) standard upper mantle mineralogy; (b) an Fe-enriched upper mantle model (Wilkinson and Binns 1977); (c) lower crust mineralogy, based on analysed megacryst compositions. The calculations suggest that these mafic magmas were not in equilibrium with either mantle model prior to eruption, but show much closer approaches to equilibrium with the lower crust model. Calculated equilibration temperatures and pressures (for the lower crust model) range from 995°–l,391° C (average 1,192), and 7.2–16.3 kb (average 12.4). These results are interpreted in terms of a model of intrusion and magma fractionation within the crust-mantle interface region, with consequent crustal underplating and thickening beneath the Tertiary volcanic regions. Some support for the latter is provided by regional isostatic gravity anomalies and physiographic considerations.  相似文献   
885.
The Tombador Formation exhibits depositional sequence boundaries placed at the base of extensive amalgamated fluvial sand sheets or at the base of alluvial fan conglomeratic successions that indicate basinward shifts of facies. The hierarchy system that applies to the Tombador Formation includes sequences of different orders, which are defined as follows: sequences associated with a particular tectonic setting are designated as ‘first order’ and are separated by first‐order sequence boundaries where changes in the tectonic setting are recorded; second‐order sequences represent the major subdivisions of a first‐order sequence and reflect cycles of change in stratal stacking pattern observed at 102 m scales (i.e., 200–300 m); changes in stratal stacking pattern at 101 m scales indicate third‐order sequences (i.e., 40–70 m); and changes in stratal stacking pattern at 100 m scales are assigned to the fourth order (i.e., 8–12 m). Changes in palaeogeography due to relative sea level changes are recorded at all hierarchical levels, with a magnitude that increases with the hierarchical rank. Thus, the Tombador Formation corresponds to one‐first‐order sequence, representing a distinct intracratonic sag basin fill in the polycyclic history of the Espinhaço Supergroup in Chapada Diamantina Basin. An angular unconformity separates fluvial‐estuarine to alluvial fan deposits and marks the second‐order boundary. Below the angular unconformity the third‐order sequences record fluvial to estuarine deposition. In contrast, above the angular unconformity these sequences exhibit continental alluvial successions composed conglomerates overlain by fluvial and eolian strata. Fourth‐order sequences are recognized within third‐order transgressive systems tract, and they exhibit distinct facies associations depending on their occurrence at estuarine or fluvial domains. At the estuarine domain, they are composed of tidal channel, tidal bar and overlying shoreface heterolithic strata. At the fluvial domain the sequences are formed of fluvial deposits bounded by fine‐grained or tidal influenced intervals. Fine grained intervals are the most reliable to map in fourth‐order sequences because of their broad laterally extensive sheet‐like external geometry. Therefore, they constitute fourth‐order sequence boundaries that, at the reservoir approach, constitute the most important horizontal heterogeneity and, hence, the preferable boundaries of production zones. The criteria applied to assign sequence hierarchies in the Tombador Formation are based on rock attributes, are easy to apply, and can be used as a baseline for the study of sequence stratigraphy in Precambrian and Phanerozoic basins placed in similar tectonic settings.  相似文献   
886.
A new pyroclastic stratigraphy is presented for the island of Ischia, Italy, for the period ∼75–50 ka BP. The data indicate that this period bore witness to the largest eruptions recorded on the island and that it was considerably more volcanically active than previously thought. Numerous vents were probably active during this period. The deposits of at least 10 explosive phonolite to basaltic-trachyandesite eruptions are described and interpreted. They record a diverse range of explosive volcanic activity including voluminous fountain-fed ignimbrite eruptions, fallout from sustained eruption columns, block-and-ash flows, and phreatomagmatic eruptions. Previously unknown eruptions have been recognised for the first time on the island. Several of the eruptions produced pyroclastic density currents that covered the whole island as well as the neighbouring island of Procida and parts of the mainland. The morphology of Ischia was significantly different to that seen today, with edifices to the south and west and a submerged depression in the centre. The largest volcanic event, the Monte Epomeo Green Tuff (MEGT) resulted in caldera collapse across all or part of the island. It is shown to comprise at least two thick intracaldera ignimbrite flow-units, separated by volcaniclastic sediments that were deposited during a pause in the eruption. Extracaldera deposits of the MEGT include a pumice fall deposit emplaced during the opening phases of the eruption, a widespread lithic lag breccia outcropping across much of Ischia and Procida, and a distal ignimbrite in south-west Campi Flegrei. During this period the style and magnitude of volcanism was dictated by the dynamics of a large differentiated magma chamber, which was partially destroyed during the MEGT eruption. This contrasts with the small-volume Holocene and historical effusive and explosive activity on Ischia, the timing and distribution of which has been controlled by the resurgence of the Monte Epomeo block. The new data contribute to a clearer understanding of the long-term volcanic and magmatic evolution of Ischia.  相似文献   
887.
Costa Rica is located geographically in the southern part of the Central American Volcanic Front, a zone where interaction between the Mesoamerican and South American cultures occurred in pre-Columbian times. Several volcanoes violently erupted during the Holocene, when the first nomadic human hunters and later settlers were present. Volcanic rocks were the most important geo-resource in making artifacts and as construction materials for pre-Columbian inhabitants. Some pottery products are believed to resemble smoking volcanoes, and the settlements around volcanoes would seem to indicate their influence on daily life. Undoubtedly, volcanic eruptions disrupted the life of early settlers, particularly in the vicinity of Arenal and Irazú volcanoes, where archaeological remains show transient effects and displacement caused by periodical eruptions, but later resilient occupations around the volcanoes. Most native languages are extinct, with the exception of those presently spoken in areas far away from active volcanoes, where no words are related to volcanic phenomena or structures. The preserved legends are ambiguous, suggesting that they were either produced during the early Spanish conquest or were altered following the pre-Columbian period.  相似文献   
888.
A seismic inversion procedure is developed that inverts data available from an unmigrated stacked section to produce an interval velocity model. It attempts to overcome some of the limitations of existing methods by using a generalized linear inversion technique. The inversion process incorporates several features: (i) Lateral interval velocity variations are permitted, (ii) A fast accurate forward model was developed, (iii) Input data is weighted according to the accuracy with which it has been acquired. The procedure is applied to seismic data from the Gippsland Basin, an area offshore South-East Australia.  相似文献   
889.
Liu M  Hou LJ  Xu SY  Ou DN  Yang Y  Yu J  Wang Q 《Marine pollution bulletin》2006,52(12):1625-1633
The natural isotopic compositions and C/N elemental ratios of sedimentary organic matter were determined in the intertidal flat of the Yangtze Estuary. The results showed that the ratios of carbon and nitrogen stable isotopes were respectively −29.8‰ to − 26.0‰ and 1.6‰–5.5‰ in the flood season (July), while they were −27.3‰ to − 25.6‰ and 1.7‰–7.8‰ in the dry season (February), respectively. The δ13C signatures were remarkably higher in July than in February, and gradually increased from the freshwater areas to the brackish areas. In contrast, there were relatively complex seasonal and spatial changes in stable nitrogen isotopes. It was also reflected that δ15N and C/N compositions had been obviously modified by organic matter diagenesis and biological processing, and could not be used to trace the sources of organic matter at the study area. In addition, it was considered that the mixing inputs of terrigenous and marine materials generally dominated sedimentary organic matter in the intertidal flat. The contribution of terrigenous inputs to sedimentary organic matter was roughly estimated according to the mixing balance model of stable carbon isotopes.  相似文献   
890.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号