首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165537篇
  免费   20200篇
  国内免费   42946篇
测绘学   5907篇
大气科学   30710篇
地球物理   39448篇
地质学   79011篇
海洋学   27459篇
天文学   30989篇
综合类   4288篇
自然地理   10871篇
  2022年   877篇
  2021年   1681篇
  2020年   3118篇
  2019年   6629篇
  2018年   8388篇
  2017年   7963篇
  2016年   8842篇
  2015年   6836篇
  2014年   7569篇
  2013年   11747篇
  2012年   8076篇
  2011年   9168篇
  2010年   8607篇
  2009年   9600篇
  2008年   8298篇
  2007年   7900篇
  2006年   7369篇
  2005年   6478篇
  2004年   6861篇
  2003年   6351篇
  2002年   5906篇
  2001年   5209篇
  2000年   4745篇
  1999年   4221篇
  1998年   4399篇
  1997年   4371篇
  1996年   3647篇
  1995年   3477篇
  1994年   3159篇
  1993年   2941篇
  1992年   2673篇
  1991年   2330篇
  1990年   2463篇
  1989年   2170篇
  1988年   1946篇
  1987年   2157篇
  1986年   1886篇
  1985年   2190篇
  1984年   2438篇
  1983年   2215篇
  1982年   2128篇
  1981年   1990篇
  1980年   1714篇
  1979年   1625篇
  1978年   1594篇
  1977年   1490篇
  1976年   1376篇
  1975年   1307篇
  1974年   1299篇
  1973年   1304篇
排序方式: 共有10000条查询结果,搜索用时 625 毫秒
181.
本文在已有数据处理方法的基础上,利用近代数值逼近理论,给出了从时空域角度描述地壳垂直运动过程的一种具体的函数解析形式。最后给出了一个实际算例。  相似文献   
182.
183.
Grechnev  V.V.  Lesovoi  S.V.  Smolkov  G. Ya.  Krissinel  B.B.  Zandanov  V.G.  Altyntsev  A.T.  Kardapolova  N.N.  Sergeev  R.Y.  Uralov  A.M.  Maksimov  V.P.  Lubyshev  B.I. 《Solar physics》2003,216(1-2):239-272
The Siberian Solar Radio Telescope (SSRT) is one of the world's largest solar radio heliographs. It commenced operation in 1983, and since then has undergone several upgrades. The operating frequency of the SSRT is 5.7 GHz. Since 1992 the instrument has had the capability to make one-dimensional scans with a high time resolution of 56 ms and an angular resolution of 15 arc sec. Making one of these scans now takes 14 ms. In 1996 the capability was added to make full, two-dimensional images of the solar disk. The SSRT is now capable of obtaining images with an angular resolution of 21 arc sec every 2 min. In this paper we describe the main features and operation of the instrument, particularly emphasizing issues pertaining to the imaging process and factors limiting data quality. Some of the data processing and analysis techniques are discussed. We present examples of full-disk solar images of the quiet Sun, recorded near solar activity minimum, and images of specific structures: plages, coronal bright points, filaments and prominences, and coronal holes. We also present some observations of dynamic phenomena, such as eruptive prominences and solar flares, which illustrate the high-time-resolution observations that can be done with this instrument. We compare SSRT observations at 5.7 GHz, including computed `light curves', both morphologically and quantatively, with observations made in other spectral domains, such as 17 GHz radio images, Hα filtergrams and magnetograms, extreme-ultraviolet and X-ray observations, and dynamic radio spectra.  相似文献   
184.
A full-sky template map of the Galactic free–free foreground emission component is increasingly important for high-sensitivity cosmic microwave background (CMB) experiments. We use the recently published Hα data of both the northern and southern skies as the basis for such a template.
The first step is to correct the Hα maps for dust absorption using the 100-μm dust maps of Schlegel, Finkbeiner & Davis. We show that for a range of longitudes, the Galactic latitude distribution of absorption suggests that it is 33 per cent of the full extragalactic absorption. A reliable absorption-corrected Hα map can be produced for ∼95 per cent of the sky; the area for which a template cannot be recovered is the Galactic plane area  | b | < 5°, l = 260°–0°–160°  and some isolated dense dust clouds at intermediate latitudes.
The second step is to convert the dust-corrected Hα data into a predicted radio surface brightness. The free–free emission formula is revised to give an accurate expression (1 per cent) for the radio emission covering the frequency range 100 MHz–100 GHz and the electron temperature range 3000–20 000 K. The main uncertainty when applying this expression is the variation of electron temperature across the sky. The emission formula is verified in several extended H  ii regions using data in the range 408–2326 MHz.
A full-sky free–free template map is presented at 30 GHz; the scaling to other frequencies is given. The Haslam et al. all-sky 408-MHz map of the sky can be corrected for this free–free component, which amounts to a  ≈6  per cent correction at intermediate and high latitudes, to provide a pure synchrotron all-sky template. The implications for CMB experiments are discussed.  相似文献   
185.
We present subarcsec angular resolution observations of the neutral gas in the nearby starburst galaxy NGC 520. The central kpc region of NGC 520 contains an area of significantly enhanced star formation. The radio continuum structure of this region resolves into ∼10 continuum components. By comparing the flux densities of the brightest of these components at 1.4 GHz with published 15-GHz data we infer that these components detected at 1.4 and 1.6 GHz are related to the starburst and are most likely to be collections of several supernova remnants within the beam. None of these components is consistent with emission from an active galactic nuclei. Both neutral hydrogen (H  i ) and hydroxyl (OH) absorption lines are observed against the continuum emission, along with a weak OH maser feature probably related to the star formation activity in this galaxy. Strong H  i absorption  ( N H∼ 1022 atoms cm−2)  traces a velocity gradient of 0.5 km s−1 pc−1 across the central kpc of NGC 520. The H  i absorption velocity structure is consistent with the velocity gradients observed in both the OH absorption and in CO emission observations. The neutral gas velocity structure observed within the central kpc of NGC 520 is attributed to a kpc-scale ring or disc. It is also noted that the velocity gradients observed for these neutral gas components appear to differ with the velocity gradients observed from optical ionized emission lines. This apparent disagreement is discussed and attributed to the extinction of the optical emission from the actual centre of this source hence implying that optical ionized emission lines are only detected from regions with significantly different radii to those sampled by the observations presented here.  相似文献   
186.
The results of a survey searching for outflows using near-infrared imaging are presented. Targets were chosen from a compiled list of massive young stellar objects associated with methanol masers in linear distributions. Presently, it is a widely held belief that these methanol masers are found in (and delineate) circumstellar accretion discs around massive stars. If this scenario is correct, one way to test the disc hypothesis is to search for outflows perpendicular to the methanol maser distributions. The main objective of the survey was to obtain wide-field near-infrared images of the sites of linearly distributed methanol masers using a narrow-band 2.12-μm filter. This filter is centred on the  H2 v = 1–0 S(1)  line; a shock diagnostic that has been shown to successfully trace CO outflows from young stellar objects. 28 sources in total were imaged of which 18 sources display H2 emission. Of these, only two sources showed emission found to be dominantly perpendicular to the methanol maser distribution. Surprisingly, the H2 emission in these fields is not distributed randomly, but instead the majority of sources are found to have H2 emission dominantly parallel to their distribution of methanol masers. These results seriously question the hypothesis that methanol masers exist in circumstellar discs. The possibility that linearly distributed methanol masers are instead directly associated with outflows is discussed.  相似文献   
187.
We have developed a method for analytically solving the porous medium flow equation in many different geometries for horizontal (two‐dimensional), homogeneous and isotropic aquifers containing impermeable boundaries and any number of pumping or injection wells located at arbitrary positions within the system. Solutions and results are presented for rectangular and circular aquifers but the method presented here is easily extendible to many geometries. Results are also presented for systems where constant head boundary conditions can be emulated internal to the aquifer boundary. Recommendations for extensions of the present work are briefly discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
188.
We present the most complete multiwavelength coverage of any dwarf nova outburst: simultaneous optical, Extreme Ultraviolet Explorer and Rossi X-ray Timing Explorer observations of SS Cygni throughout a narrow asymmetric outburst. Our data show that the high-energy outburst begins in the X-ray waveband 0.9–1.4 d after the beginning of the optical rise and 0.6 d before the extreme-ultraviolet rise. The X-ray flux drops suddenly, immediately before the extreme-ultraviolet flux rise, supporting the view that both components arise in the boundary layer between the accretion disc and white dwarf surface. The early rise of the X-ray flux shows that the propagation time of the outburst heating wave may have been previously overestimated.
The transitions between X-ray and extreme-ultraviolet dominated emission are accompanied by intense variability in the X-ray flux, with time-scales of minutes. As detailed by Mauche & Robinson, dwarf nova oscillations are detected throughout the extreme-ultraviolet outburst, but we find they are absent from the X-ray light curve.
X-ray and extreme-ultraviolet luminosities imply accretion rates of  3 × 1015 g s−1  in quiescence,  1 × 1016 g s−1  when the boundary layer becomes optically thick, and  ∼1018 g s−1  at the peak of the outburst. The quiescent accretion rate is two and a half orders of magnitude higher than predicted by the standard disc instability model, and we suggest this may be because the inner accretion disc in SS Cyg is in a permanent outburst state.  相似文献   
189.
Carcedo  L.  Brown  D.S.  Hood  A.W.  Neukirch  T.  Wiegelmann  T. 《Solar physics》2003,218(1-2):29-40
Many authors use magnetic-field models to extrapolate the field in the solar corona from magnetic data in the photosphere. The accuracy of such extrapolations is usually judged qualitatively by eye, where a less judgemental quantitative approach would be more desirable. In this paper, a robust method for obtaining the best fit between a theoretical magnetic field and intensity observations of coronal loops on the solar disk will be presented. The method will be applied to Yohkoh data using a linear force-free field as an illustration. Any other theoretical model for the magnetic field can be used, provided there is enough freedom in the model to optimize the fit.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号