首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94890篇
  免费   1504篇
  国内免费   1495篇
测绘学   3171篇
大气科学   7843篇
地球物理   19560篇
地质学   34652篇
海洋学   6963篇
天文学   17388篇
综合类   2333篇
自然地理   5979篇
  2021年   457篇
  2020年   570篇
  2019年   551篇
  2018年   5566篇
  2017年   4881篇
  2016年   4083篇
  2015年   1425篇
  2014年   1785篇
  2013年   3627篇
  2012年   2613篇
  2011年   4939篇
  2010年   4060篇
  2009年   5276篇
  2008年   4573篇
  2007年   4670篇
  2006年   2677篇
  2005年   2455篇
  2004年   2732篇
  2003年   2537篇
  2002年   2305篇
  2001年   1934篇
  2000年   1900篇
  1999年   1618篇
  1998年   1634篇
  1997年   1554篇
  1996年   1373篇
  1995年   1286篇
  1994年   1183篇
  1993年   1057篇
  1992年   995篇
  1991年   855篇
  1990年   1063篇
  1989年   907篇
  1988年   802篇
  1987年   985篇
  1986年   849篇
  1985年   1079篇
  1984年   1246篇
  1983年   1203篇
  1982年   1080篇
  1981年   1054篇
  1980年   905篇
  1979年   870篇
  1978年   942篇
  1977年   832篇
  1976年   803篇
  1975年   764篇
  1974年   764篇
  1973年   775篇
  1972年   475篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Coastal plains are amongst the most densely populated areas in the world. Many coastal peatlands are drained to create arable land. This is not without consequences; physical compaction of peat and its degradation by oxidation lead to subsidence, and oxidation also leads to emissions of carbon dioxide (CO2). This study complements existing studies by quantifying total land subsidence and associated CO2 respiration over the past millennium in the Dutch coastal peatlands, to gain insight into the consequences of cultivating coastal peatlands over longer timescales. Results show that the peat volume loss was 19.8 km3, which lowered the Dutch coastal plain by 1.9 m on average, bringing most of it below sea level. At least 66 % of the volume reduction is the result of drainage, and 34 % was caused by the excavation and subsequent combustion of peat. The associated CO2 respiration is equivalent to a global atmospheric CO2 concentration increase of ~0.39 ppmv. Cultivation of coastal peatlands can turn a carbon sink into a carbon source. If the path taken by the Dutch would be followed worldwide, there will be double trouble: globally significant carbon emissions and increased flood risk in a globally important human habitat. The effects would be larger than the historic ones because most of the cumulative Dutch subsidence and peat loss was accomplished with much less efficient techniques than those available now.  相似文献   
972.
Fluid exchange across the sediment–water interface in a sandy open continental shelf setting was studied using heat as a tracer. Summertime tidal oscillation of cross-shelf thermal fronts on the South Atlantic Bight provided a sufficient signal at the sediment–water interface to trace the advective and conductive transport of heat into and out of the seabed, indicating rapid flushing of ocean water through the upper 10–40 cm of the sandy seafloor. A newly developed transport model was applied to the in situ temperature data set to estimate the extent to which heat was transported by advection rather than conduction. Heat transported by shallow 3-D porewater flow processes was accounted for in the model by using a dispersion term, the depth and intensity of which reflected the depth and intensity of shallow flushing. Similar to the results of past studies in shallower and more energetic nearshore settings, transport of heat was greater when higher near-bed velocities and shear stresses occurred over a rippled bed. However, boundary layer processes by themselves were insufficient to promote non-conductive heat transport. Advective heat transport only occurred when both larger boundary layer stresses and thermal instabilities within the porespace were present. The latter process is dependent on shelf-scale heating and cooling of bottom water associated with upwelling events that are not coupled to local-scale boundary layer processes.  相似文献   
973.
Multiobjective optimization deals with mathematical optimization problems where two or more objective functions (cost functions) are to be optimized (maximized or minimized) simultaneously. In most cases of interest, the objective functions are in conflict, i.e., there does not exist a decision (design) vector (vector of optimization variables) at which every objective function takes on its optimal value. The solution of a multiobjective problem is commonly defined as a Pareto front, and any decision vector which maps to a point on the Pareto front is said to be Pareto optimal. We present an original derivation of an analytical expression for the steepest descent direction for multiobjective optimization for the case of two objectives. This leads to an algorithm which can be applied to obtain Pareto optimal points or, equivalently, points on the Pareto front when the problem is the minimization of two conflicting objectives. The method is in effect a generalization of the steepest descent algorithm for minimizing a single objective function. The steepest-descent multiobjective optimization algorithm is applied to obtain optimal well controls for two example problems where the two conflicting objectives are the maximization of the life-cycle (long-term) net-present-value (NPV) and the maximization of the short-term NPV. The results strongly suggest the multiobjective steepest-descent (MOSD) algorithm is more efficient than competing multiobjective optimization algorithms.  相似文献   
974.
975.
976.
Estuarine ecosystems provide many services to humans, but these ecosystems are also under pressure from human development, which has led to large investments in habitat protection and restoration. Restoration in estuaries is typically focused on emergent and submerged vegetation with the goal of achieving target areal coverage based on historic conditions. Such restoration targets assume no spatial heterogeneity in habitat value and bypass the functional target of restoring or maintaining delivery of ecosystem goods and services (EGS). We have developed a spatially explicit individual-based behavioral model intended to explore the functional role of habitat restoration on EGS delivery in an index system (Tampa Bay, FL) and for an index EGS (recreational fishing). Model scenarios are based on interaction of inter-annual differences in salinity/temperature patterns (wet, dry, average) with hindcasted “increases” in coverage and distribution of seagrass. Model predictions indicated that the effect of seagrass restoration to historic (1950s) levels on both fish and fishery production is dependent on salinity and temperature. This dependence is based on predicted fish response both to habitat changes and the effective spatial scale of different habitat components. Overall, average salinity/temperature conditions facilitated the highest positive functional response to seagrass restoration with extreme wet/dry years yielding lower or even negative functional responses, but these responses were localized and not homogenous about the estuary. The results of this study provide a methodology for using functional targets in restoration planning and highlight the importance of considering the entire habitat mosaic in valuing restored habitat from an EGS perspective.  相似文献   
977.
Previous work has documented large fluxes of freshwater and nutrients from submarine groundwater discharge (SGD) into the coastal waters of a few volcanic oceanic islands. However, on the majority of such islands, including Moorea (French Polynesia), SGD has not been studied. In this study, we used radium (Ra) isotopes and salinity to investigate SGD and associated nutrient inputs at five coastal sites and Paopao Bay on the north shore of Moorea. Ra activities were highest in coastal groundwater, intermediate in coastal ocean surface water, and lowest in offshore surface water, indicating that high-Ra groundwater was discharging into the coastal ocean. On average, groundwater nitrate and nitrite (N + N), phosphate, ammonium, and silica concentrations were 12, 21, 29, and 33 times greater, respectively, than those in coastal ocean surface water, suggesting that groundwater discharge could be an important source of nutrients to the coastal ocean. Ra and salinity mass balances indicated that most or all SGD at these sites was saline and likely originated from a deeper, unsampled layer of Ra-enriched recirculated seawater. This high-salinity SGD may be less affected by terrestrial nutrient sources, such as fertilizer, sewage, and animal waste, compared to meteoric groundwater; however, nutrient-salinity trends indicate it may still have much higher concentrations of nitrate and phosphate than coastal receiving waters. Coastal ocean nutrient concentrations were virtually identical to those measured offshore, suggesting that nutrient subsidies from SGD are efficiently utilized.  相似文献   
978.
Tidal marsh degradation has been attributed to a number of different causes, but few studies have examined multiple potential factors at the same sites. Differentiating the diverse drivers of marsh loss is critical to prescribing successful interventions for conservation and restoration of this important habitat. We evaluated two hypotheses for vegetation loss at two marshes in Long Island Sound (LIS): (1) marsh submergence, caused by an imbalance between sea-level rise and marsh accretion, and (2) defoliation associated with herbivory by the purple marsh crab, Sesarma reticulatum. At our western LIS site, we found no evidence of herbivory: crabs were scarce, and crab-exclusion cages provided no benefit. We attribute degradation at that site to submergence, a conclusion supported by topographic and hydrologic data showing that loss of vegetation occurred only in wetter parts of the marsh. In contrast, at our central LIS site, our observations were consistent with herbivory as a driving force: There were substantial populations of Sesarma, crab-exclusion cages allowed plants to thrive, and vegetation loss took place across a variety of elevations. We also analyzed soil conditions at both sites, in order to determine the signatures of different degradation processes and assess the potential for restoration. At the submergence site, unvegetated soils exhibited high bulk density, low organic content, and low soil strength, posing significant biogeochemical challenges to re-colonization by vegetation. At the herbivory site, unvegetated soils had a characteristic “riddled-peat” appearance, resulting from expansion and erosion of Sesarma burrow networks. The high redox potential and organic content of those soils suggested that revegetation at the herbivory site would be likely if Sesarma populations could be controlled before erosion leads to elevation loss.  相似文献   
979.
Takashi Furumura 《Landslides》2016,13(6):1519-1524
The sequence of the 2016 Kumamoto, Japan, earthquake, which included an initial M6.5 foreshock on April 14, followed by a larger M7.3 mainshock on April 16, and subsequently occurred high aftershock activity, caused significant damage in Kumamoto and neighboring regions. The near-field strong motion record by strong motion network (K-NET and KiK-net) and the intensity meter network demonstrated clearly the characteristics of the strong ground motion developed by the shallow (H = 12 km), inland earthquake comprising short-time duration (<15–20 s) but large (>1G) ground accelerations. The velocity response spectra of the near-fault motion at Mashiki and Nishihara showed large levels (>300–550 cm/s) in the short-period range (T = 1–2 s), several times larger than that of the near-field record of the destructive 1995 Kobe earthquake (M7.3) and that of the 2004 Mid-Niigata earthquake (M6.8). This period corresponds to the collapse vulnerability of Japanese wooden-frame houses, and is the major cause of severe damage during the Kumamoto earthquake. The response spectra also showed extremely large levels (>240–340 cm/s) in the long-period (T > 3 s) band, which is potentially disastrous for high-rise buildings, large oil storage tanks, etc. to have longer resonant period. Such long-period motion was, for the most parts, developed by the static displacement of the fault movement rather than by the seismic waves radiating from the source fault. Thus, the extreme near-fault long-period motion was hazardous only close to the fault but it attenuated very rapidly away from the fault.  相似文献   
980.
Warning systems are increasingly applied to reduce damage caused by different magnitudes of rockslides and rockfalls. In an integrated risk-management approach, the optimal risk mitigation strategy is identified by comparing the achieved effectiveness and cost; estimating the reliability of the warning system is the basis for such considerations. Here, we calculate the reliability and effectiveness of the warning system installed in Preonzo prior to a major rockfall in May 2012. “Reliability” is defined as the ability of the warning system to forecast the hazard event and to prevent damage. To be cost-effective, the warning system should forecast an event with a limited number of false alarms to avoid unnecessary costs for intervention measures. The analysis shows that to be reliable, warning systems should be designed as fail-safe constructions. They should incorporate components with low failure probabilities, high redundancy, have low warning thresholds, and additional control systems. In addition, the experts operating the warning system should have limited risk tolerance. In an additional hypothetical probabilistic analysis, we investigate the effect of the risk attitude of the decision makers and of the number of sensors on the probability of detecting the event and initiating a timely evacuation, as well as on the related intervention cost. The analysis demonstrates that quantitative assessments can support the identification of optimal warning system designs and decision criteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号