首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73924篇
  免费   1225篇
  国内免费   534篇
测绘学   1897篇
大气科学   5967篇
地球物理   15659篇
地质学   24373篇
海洋学   6219篇
天文学   16237篇
综合类   247篇
自然地理   5084篇
  2021年   551篇
  2020年   735篇
  2019年   722篇
  2018年   1277篇
  2017年   1266篇
  2016年   1821篇
  2015年   1325篇
  2014年   1777篇
  2013年   3745篇
  2012年   1891篇
  2011年   2669篇
  2010年   2334篇
  2009年   3272篇
  2008年   2919篇
  2007年   2611篇
  2006年   2682篇
  2005年   2303篇
  2004年   2414篇
  2003年   2185篇
  2002年   2112篇
  2001年   1883篇
  2000年   1849篇
  1999年   1583篇
  1998年   1553篇
  1997年   1559篇
  1996年   1335篇
  1995年   1269篇
  1994年   1151篇
  1993年   1038篇
  1992年   989篇
  1991年   843篇
  1990年   1059篇
  1989年   884篇
  1988年   778篇
  1987年   978篇
  1986年   849篇
  1985年   1056篇
  1984年   1215篇
  1983年   1159篇
  1982年   1070篇
  1981年   1013篇
  1980年   860篇
  1979年   846篇
  1978年   895篇
  1977年   819篇
  1976年   771篇
  1975年   718篇
  1974年   717篇
  1973年   738篇
  1972年   456篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
931.
The MOx instrument was developed to characterize the reactive nature of the martian soil. The objectives of MOx were: (1) to measure the rate of degradation of organics in the martian environment; (2) to determine if the reactions seen by the Viking biology experiments were caused by a soil oxidant and measure the reactivity of the soil and atmosphere: (3) to monitor the degradation, when exposed to the martian environment, of materials of potential use in future missions; and, finally, (4) to develop technologies and approaches that can be part of future soil analysis instrumentation. The basic approach taken in the MOx instrument was to place a variety of materials composed as thin films in contact with the soil and monitor the physical and chemical changes that result. The optical reflectance of the thin films was the primary sensing-mode. Thin films of organic materials, metals, and semiconductors were prepared. Laboratory simulations demonstrated the response of thin films to active oxidants.  相似文献   
932.
A verification framework for interannual-to-decadal predictions experiments   总被引:1,自引:1,他引:1  
Decadal predictions have a high profile in the climate science community and beyond, yet very little is known about their skill. Nor is there any agreed protocol for estimating their skill. This paper proposes a sound and coordinated framework for verification of decadal hindcast experiments. The framework is illustrated for decadal hindcasts tailored to meet the requirements and specifications of CMIP5 (Coupled Model Intercomparison Project phase 5). The chosen metrics address key questions about the information content in initialized decadal hindcasts. These questions are: (1) Do the initial conditions in the hindcasts lead to more accurate predictions of the climate, compared to un-initialized climate change projections? and (2) Is the prediction model’s ensemble spread an appropriate representation of forecast uncertainty on average? The first question is addressed through deterministic metrics that compare the initialized and uninitialized hindcasts. The second question is addressed through a probabilistic metric applied to the initialized hindcasts and comparing different ways to ascribe forecast uncertainty. Verification is advocated at smoothed regional scales that can illuminate broad areas of predictability, as well as at the grid scale, since many users of the decadal prediction experiments who feed the climate data into applications or decision models will use the data at grid scale, or downscale it to even higher resolution. An overall statement on skill of CMIP5 decadal hindcasts is not the aim of this paper. The results presented are only illustrative of the framework, which would enable such studies. However, broad conclusions that are beginning to emerge from the CMIP5 results include (1) Most predictability at the interannual-to-decadal scale, relative to climatological averages, comes from external forcing, particularly for temperature; (2) though moderate, additional skill is added by the initial conditions over what is imparted by external forcing alone; however, the impact of initialization may result in overall worse predictions in some regions than provided by uninitialized climate change projections; (3) limited hindcast records and the dearth of climate-quality observational data impede our ability to quantify expected skill as well as model biases; and (4) as is common to seasonal-to-interannual model predictions, the spread of the ensemble members is not necessarily a good representation of forecast uncertainty. The authors recommend that this framework be adopted to serve as a starting point to compare prediction quality across prediction systems. The framework can provide a baseline against which future improvements can be quantified. The framework also provides guidance on the use of these model predictions, which differ in fundamental ways from the climate change projections that much of the community has become familiar with, including adjustment of mean and conditional biases, and consideration of how to best approach forecast uncertainty.  相似文献   
933.
In the Pulur complex (Sakarya Zone, Eastern Pontides, Turkey) a low-grade tectonometamorphic unit (Doankavak) is exposed in three tectonic windows beneath a complex medium-pressure high-temperature metamorphic unit of late Carboniferous age. The thrust plane between both units is transgressively covered by Liassic conglomerates. The Doankavak unit comprises a sequence of metabasites with MORB-type chemical compositions and phyllites, with subordinate calcareous phyllites, marbles, quarzofeldspathic schists and metacherts. This sequence is interpreted as a former accretionary complex related to the consumption of the Palaeotethys. Mineral parageneses in the metabasites allow for the distinction of two domains with slightly different peak metamorphic conditions, i.e. 375–425 °C/0.5–0.8 GPa (greenschist facies) and 400–470 °C/0.6–1.1 GPa (albite-epidote amphibolite facies). The age of metamorphism is constrained at ~ 260 Ma (early Late Permian) by two Rb-Sr mineral-whole rock ages (hornblende, phengite) and one 40Ar/39Ar single step total fusion age (phengite). In conjunction with previous data on other accretionary complexes in the Sakarya zone in Northern Turkey, the data presented in this study suggest a continuous subduction of the Palaeotethys at least from Early/Late Permian to Late Triassic and a discontinuous preservation of accretion complexes in both space and time.  相似文献   
934.
At Kabbaldurga, infiltration of carbonic fluids along a systemof ductile shears and foliation planes has led to partial transformationof Archaean grey biotite–hornblende gneiss to coarse-grainedmassive charnockite at about 2.5 b.y. ago. The dehydration ofthe gneiss assemblage was induced by a marked metasomatic changeof the reacting system from granodioritic to granitic, and obviouslytook place under conditions of an open system at 700–750?C and 5–7 kb. Extensive replacement of plagioclase (An16–30)by K-feldspar through Na, Ca–K exchange reactions withthe ascending carbonic fluids led to strong enrichment in K,Rb, Ba, and SiO2, and to a depletion in Ca. Progressive dissolutionof hornblende, biotite, magnetite, and the accessory mineralsapatite and zircon resulted in a marked depletion in Fe, Mg,Ti, Zn, V, P, and Zr. Most important is the recognition of REEmobility: with advancing charnockitization, the moderately fractionatedREE distribution patterns of the grey gneisses (LaN270; LaN/YbN= 5–20; EuN27; Eu/Eu* = 0.6–0.3) give way to stronglyfractionated REE patterns with a positive Eu-anomaly (LaN200;LaN/YbN = 20–80; EuN22; Eu/Eu* = 0.6–1.8). The systematicdepletion especially in the HREE is due to the progressive dissolutionof zircon, apatite (and monazite), which strongly concentratethe REE. Stable isotope data (18O of 6.9–8.0 per mille for gneissesand charnockites; 13C of –8.5 and –6.5 per millefor late carbonate) indicate a magmatogenic source for the carbonicfluids. In contrast to the currently favoured derivation ofcarbonic fluids by decarbonation of the upper mantle or degassingof underplated basaltic intrusions, it is discussed here thatabundant fluid inclusions in lower crustal charnockites providedan extensive reservoir of ‘fossil’ carbonic fluids.Shear deformation has tapped this reservoir and generated thechannel-ways for fluid ascent. Charnockitization of the Kabbaldurgatypethus appears to be a metasomatic process which is tectonicallycontrolled and restricted to the crustal level of the amphiboliteto granulite transition.  相似文献   
935.
Multispectral satellite imagery, in conjunction with aerial photography and field work, offers new possibilities for the recognition and interpretation of overregional geological and tectonic systems. All three methods in geologic work were applied to Northern and Central Italy. In the Northern and Central Apennines two stress directions were recognized. The various stages in the evolution of the mountains and of the whole peninsula were evaluated and interpreted under new aspects. The tectonic features are explained by a clockwise rotation of various blocks along left-handed transform faults. These faults can be interpreted as resulting from shear due to a main stress directed north-eastwards. The lineations of the Southern Alps are traced through the Po Valley into the Northern Apennines.

Zusammenfassung

Multispectral satellite imagery, in conjunction with aerial photography and field work, offers new possibilities for the recognition and interpretation of overregional geological and tectonic systems. All three methods in geologic work were applied to Northern and Central Italy. In the Northern and Central Apennines two stress directions were recognized. The various stages in the evolution of the mountains and of the whole peninsula were evaluated and interpreted under new aspects. The tectonic features are explained by a clockwise rotation of various blocks along left-handed transform faults. These faults can be interpreted as resulting from shear due to a main stress directed north-eastwards. The lineations of the Southern Alps are traced through the Po Valley into the Northern Apennines.  相似文献   
936.
Salt marshes are an important transition zone between terrestrial and marine ecosystems, and in their natural state, they often function to cycle or trap terrestrially derived nutrients and organic matter. Many US salt marshes were ditched during the twentieth century, potentially altering their functionality. The goal of this 4-year study was to assess the impact of water from ditches within seven salt marshes on estuarine water quality and plankton communities within four estuaries on Long Island, NY, USA. We found that concentrations of inorganic nutrients (ammonium, phosphate), dissolved and particulate organic nitrogen and carbon (POC, PON, DOC, DON), and total coliform bacteria were significantly enriched in salt marsh ditches compared to the estuaries they discharged into. In addition, concentrations of ammonium and DON became more enriched in ditches as tidal levels decreased, suggesting these constituents were generated in situ. Quantification of nitrogen sources in Flanders Bay, NY, suggested salt marsh ditches could represent a substantial source of N to this estuary during summer months. Experimental incubations demonstrated that water from salt marsh ditches was capable of significantly enhancing the growth of multiple classes of phytoplankton, with large diatoms and dinoflagellates displaying the most dramatic increases in growth. Experiments further demonstrated that salt marsh ditchwater was capable of significantly enhancing pelagic respiration rates, suggesting discharge from ditches could influence estuarine oxygen consumption. In summary, this study demonstrates that tidal draining of salt marsh ditches is capable of degrading multiple aspects of estuarine water quality.  相似文献   
937.
Three major, interdependent processes control the genesis and distribution of mineral and thermal waters in the Rhenish Massif, Central Europe: (a) Magmatic processes in the upper mantle provide most of the CO2 to produce bicarbonate waters in shallow aquifers. (b) Extension of the brittle upper crust enables the ascent of sodium chloride waters. (c) Uplift and erosion shape the massif's relief, which determines the extent of flow systems and the distribution of thermal springs. The chemistry of mineral waters further depends on the aquifers' mineral composition. A comprehensive set of hydrological, chemical, tectonic and geophysical data on the Rhenish Massif has been compiled. It was used to classify the mineral waters and to map the spatial distribution of water properties. The composition of cuttings from several representative wells producing different water types shows that the hydrothermal alteration of the aquifer rocks consists mainly of kaolinization of chlorite and dissolution of feldspar. Numerical transport simulations favour two modes of groundwater flow: topography-driven flow and the pressure-driven ascent of basement brines along active faults. Thermal convection is less important.  相似文献   
938.
Geochemical evidence for modern low-temperature serpentinization has been found in three new localities. Apparently the low-temperature reactions are a common mode of formation of the lizardite-chrysotile and brucite assemblage. Possibly the 18O content of serpentine formed at low temperatures is in part inherited from the pyroxene and olivine.  相似文献   
939.
The Piedmont and Coastal Plain physiographic provinces comprise 80 percent of the Atlantic Coastal states from New Jersey to Georgia. The provinces are climatically similar. The soil moisture regime is udic. The soil temperature regime is typically thermic from Virginia through Georgia, although it is mesic at altitudes above 400 m in Georgia and above 320 m in Virginia. The soil temperature regime is mesic for the Piedmont and Coastal Plain from Maryland through New Jersey. The tightly folded, structurally complex crystalline rocks of the Piedmont and the gently dipping “layer-cake” clastic sedimentary rocks and sediments of the Coastal Plain respond differently to weathering, pedogenesis, and erosion. The different responses result in two physiographically contrasting terrains; each has distinctive near-surface hydrology, regolith, drainage morphology, and morphometry.The Piedmont is predominantly an erosional terrain. Interfluves are as narrow as 0.5 to 2 km, and are convex upward. Valleys are as narrow as 0.1 to 0.5 km and generally V-shaped in cross section. Alluvial terraces are rare and discontinuous. Soils in the Piedmont are typically less than 1 m thick, have less sand and more clay than Coastal Plain soils, and generally have not developed sandy epipedons. Infiltration rates for Piedmont soils are low at 6–15 cm/h. The soil/saprolite, soil/rock, and saprolite/rock boundaries are distinct (can be placed within 10 cm) and are characterized by ponding and/or lateral movement of water. Water movement through soil into saprolite, and from saprolite into rock, is along joints, foliation, bedding planes and faults. Soils and isotopic data indicate residence times consistent with a Pleistocene age for most Piedmont soils.The Coastal Plain is both an erosional and a constructional terrain. Interfluves commonly are broader than 2 km and are flat. Valleys are commonly as wide as 1 km to greater than 10 km, and contain numerous alluvial and estuarine terrace sequences that can be correlated along valleys for tens of kilometers. Coastal Plain soils are typically as thick as 2 to 8 m, have high sand content throughout, and have sandy epipedons. These epipedons consist of both A and E horizons and are 1 to 4 m thick. In Coastal Plain soils, the boundaries are transitional between the solum and the underlying parent material and between weathered and unweathered parent material. Infiltration rates for Coastal Plain soils are typically higher at 13–28 cm/h, than are those for Piedmont soils. Indeed, for unconsolidated quartz sand, rates may exceed 50 cm/h. Water moves directly from the soil into the parent material through intergranularpores with only minor channelization along macropores, joints, and fractures. The comparatively high infiltration capacity results in relatively low surface runoff, and correspondingly less erosion than on the Piedmont uplands.Due to differences in Piedmont and Coastal Plain erosion rates, topographic inversion is common along the Fall Zone; surfaces on Cenozoic sedimentary deposits of the Coastal Plain are higher than erosional surfaces on regolith weathered from late Precambrian to early Paleozoic crystalline rocks of the Piedmont. Isotopic, paleontologic, and soil data indicate that Coastal Plain surficial deposits are post-middle Miocene to Holocene in age, but most are from 5 to 2 Ma. Thus, the relatively uneroded surfaces comprise a Pliocene landscape. In the eastern third of the Coastal Plain, deposits that are less than 3.5 Ma include alluvial terraces, marine terraces and barrier/back-barrier complexes as morphostratigraphic units that cover thousands of square kilometers. Isotopic and soil data indicate that eastern Piedmont soils range from late Pliocene to Pleistocene in age, but are predominantly less than 2 Ma old. Thus, the eroded uplands of the Piedmont “peneplain” comprise a Pleistocene landscape.  相似文献   
940.
The atomic-scale interactions that occur between cations and the metal-binding cell wall components common to many gram-positive bacteria were investigated using molecular simulations techniques. We examined the adsorption of Cd and Pb onto peptidoglycan and teichoic acid components of the bacterial cell wall using classical energy force field methods. Within the framework of molecular mechanics and the Cerius2 modeling software, we used energy minimization, conformational analysis, and molecular dynamics to examine the different components of the cell wall and to determine relative binding energies and structural configurations of the cell wall components, both with and without the metals present. Electronic structure calculations of representative metal-organic complexes validate the more practical classical methods required in simulating the large number of atoms associated with the cell wall components. The classical force field simulations were conducted in both gas phase and solvated periodic cells. Force field-based simulation techniques can adequately describe the interactions of Cd with the cell wall, defining both metal ion coordinations and binding distances. However, the classical force field approach is inconsistent in describing the observed Pb-cell wall interactions due to possible limitations in the force field parameters, the propensity for Pb to form hydroxides at circumneutral pH, or the dominance of other adsorption mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号