首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   17篇
  国内免费   5篇
测绘学   18篇
大气科学   28篇
地球物理   89篇
地质学   184篇
海洋学   16篇
天文学   29篇
综合类   6篇
自然地理   25篇
  2022年   9篇
  2021年   15篇
  2020年   6篇
  2019年   15篇
  2018年   27篇
  2017年   27篇
  2016年   38篇
  2015年   22篇
  2014年   23篇
  2013年   41篇
  2012年   18篇
  2011年   18篇
  2010年   13篇
  2009年   23篇
  2008年   6篇
  2007年   14篇
  2006年   12篇
  2005年   7篇
  2004年   4篇
  2003年   6篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1993年   2篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1984年   1篇
  1983年   2篇
  1982年   5篇
  1981年   1篇
  1979年   1篇
  1976年   2篇
排序方式: 共有395条查询结果,搜索用时 31 毫秒
111.
A groundwater flow model has been developed in order to study the chalk aquifer of Paris Basin, based on most of the geological and hydrological available data. The numerical processes are intended to modelling the groundwater flow in the Senonian (Late Cretaceous) formations and to visualize the tracer movement in groundwater resources in the experimental site of LaSalle Beauvais (northern part Paris Basin). Both objectives were achieved as follows: (i) the comprehension of the spatial distribution of the hydraulic conductivity in the chalk aquifer taking into account the characteristics of the hydrogeological system and (ii) the use of the analytical solution for describing one‐dimensional to two‐dimensional solute transport in a unidirectional steady‐state flow tracer with scale‐dependent dispersion. Advection and diffusion mechanisms are taken into account. Comparison between the breakthrough curves of the analytical and the numerical solutions provided an excellent agreement for various ranges of scale‐related transport parameters of interest. The developed power series solution facilitates fast prediction of the breakthrough curves at each observation point. Thus, the derived new solutions are widely applicable and are very useful for the validation of numerical transport. The numerical approach is carried out by MT3DMS, a Modular 3‐D Multi‐Species Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems, and based on total variation‐diminishing method using the ULTIMATE algorithm. The estimation of the infected surface could constitute an approach in water management and allows to prevent the risks of pollution and to manage the groundwater resource from a durable development perspective. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
112.
More than one set of anchors with different orientations can be an economical solution to completely stabilize the rock slope. In this note, a general analytical expression for the factor of safety of a multi-directional anchored rock slope (MDARS) against plane failure is derived, incorporating most of the practically occurring destabilizing forces under surcharge and seismic loading conditions. Several special cases of this expression are found to be similar to those reported in the literature. A graphical presentation shows that for any specific inclination of one set of anchors to the normal at failure plane, the variation in the inclination of the second set of anchors to the normal at failure plane, when greater than approximately 60°, does not cause a significant change in the factor of safety of the MDARS.  相似文献   
113.
We have combined tensor radio magnetotelluric- (RMT, 15–250 kHz) and controlled source tensor magnetotelluric (CSTMT, 1–12 kHz) data for the mapping of aquifers in gravel formations lying in between crystalline bedrock and clay rich sediments in the Heby area some 40 km west of Uppsala in Sweden. The estimated transfer functions, the impedance tensor and the tipper vector generally satisfy 1D or 2D necessary conditions except for the lowest CSTMT frequencies where near field effects become more dominant.The data measured from 8 profiles were inverted with the Rebocc code of Siripunvaraporn and Egbert (2000) assuming plane wave conditions. This meant that only 12 frequencies in the range of 4–180 kHz could be used. The four lowest frequencies of CSTMT in the range of 1–2.8 kHz were excluded because of source effects. Data from all profiles were inverted with a starting model of 100 Ω-m and a relative error floor of 0.02 on apparent resistivity, corresponding to less than 1° on phase. Tipper vectors are generally small except when source effects become dominant in the lowest frequencies of CSTMT and were therefore not used for inversion. Comparing with models derived from vertical electrical soundings, refraction and reflection seismic data as well as ground truth from exploration wells assessed the reliability of the deep part of the models. Furthermore we carried out a non-linear resolution analysis to better quantify the depth extent of the aquifers.The inverted models from the Heby area show well the thickness variations of glacial deposits overlying crystalline bedrock. Generally, the upper 20 m of the models have resistivities below 40 Ω-m, taken to represent clay rich formations. Below the clay layer resistivities increase to about 40–400 Ω-m, interpreted to represent sand/gravel formations with a maximum thickness of about 40 m and a width of several hundred metres. This is a potential aquifer that extends in approximately N–S direction for some kilometres.  相似文献   
114.
Although the TRMM-based Flood Detection System (FDS) has been in operation in near real-time since 2006, the flood ‘detection’ capability has been validated mostly against qualitative reports in news papers and other types of media. In this study, a more quantitative validation of the FDS over Bangladesh against in situ measurements is presented. Using measured stream flow and rainfall data, the study analyzed the flood detection capability from space for three very distinct river systems in Bangladesh: (1) Ganges– a snowmelt-fed river regulated by upstream India, (2) Brahmaputra – a snow-fed river that is braided, and (3) Meghna – a rain-fed and relatively flashier river. The quantitative assessment showed that the effectiveness of the TRMM-based FDS can vary as a function of season and drainage basin characteristics. Overall, the study showed that the TRMM-based FDS has great potential for flood prone countries like Bangladesh that are faced with tremendous hurdles in transboundary flood management. The system had a high probability of detection overall, but produced increased false alarms during the monsoon period and in regulated basins (Ganges), undermining the credibility of the FDS flood warnings for these situations. For this reason, FDS users are cautioned to verify FDS estimates during the monsoon period and for regulated rivers before implementing flood management practices. Planned improvements by FDS developers involving physically-based hydrologic modeling should transform the system into a more accurate tool for near real-time decision making on flood management for ungauged river basins of the world.  相似文献   
115.
Nonlinear static analysis procedures are key tools in evaluating the performance of existing buildings and verifying the design of seismic retrofits in seismically active regions.In this procedure,nonlinear force-displacement or moment-curvature (M-(4)) behavior needs to be defined.In the ATC-40 document,values of M-~ have been proposed to model elements in a nonlinear procedure.However,these values need to be investigated to determine if they are representative of actual values.In this paper,an attempt has been made to numerically derive M-(4) curves to simulate actual performance.Then,these curves are compared with the ATC-40 recommended curves with respect to various parameters.The study indicated that ATC-40 suggested values are conservative in nature in most situations.  相似文献   
116.
Various hydrological, geological and geomorphological factors play a major role in the occurrence and movement of groundwater in different terrains. With advances in space technology and the advent of powerful personal computers, techniques for the assessment of groundwater potential have evolved, of which remote sensing (RS) and geographic information systems (GIS) are of great significance. The application of these methods is comprehensively reviewed with respect to the exploration and assessment of groundwater potential in consolidated and unconsolidated formations in semi-arid regions, and specifically in India. The process of such assessment includes the collection of remotely sensed data from suitable sensors and the selection of thematic maps on rainfall, geology, lithology, geomorphology, soil, land use/land cover, drainage patterns, slope and lineaments. The data are handled according to their significance with the assignment of appropriate weights and integrated into a sophisticated GIS environment. The requisite remote sensing and GIS data, in conjunction with necessary field investigations, help to identify the groundwater potential zones effectively.  相似文献   
117.
A regional assessment of the arsenic (As) contamination scenario in shallow tube wells (depth < 150 m) of western Bangladesh is presented. Comparisons are made in light of bulk geological differences (Pleistocene versus Holocene deposits/northwest versus southwest) and As measurement protocols (field kit (FK) versus atomic absorption spectroscopy (AAS)). Our As database comprised the following: (1) the nationwide As survey completed in 1999 by the British Geological Survey in collaboration with the Department of Public Health Engineering (DPHE); and (2) a regional As survey conducted in southwest Bangladesh by the Japan International Cooperation Agency in collaboration with DPHE in 2002. First, we characterize the error structure of the semi‐quantitative FK As measurements using collocated AAS As measurements as reference from a set of 307 wells located in southwest Bangladesh. The depth distribution of As is identified using a very dense cluster of 2963 wells over a 560 km2 domain. The probability of the FK method for successful detection of a well sample as unsafe (safe) was found to be 96·9% (34·1%) and 95·2% (80·3%) for the World Health Organization (WHO) and Bangladesh safe limits, respectively. Similarly, the probability of false alarms and false hopes for WHO (Bangladesh) safe limits were found to be 3·1% (4·8%) and 87·5% (19·7%), respectively. The depth at which the highest fraction of wells exceeding a given safe limit occurred could still be inferred correctly by FK measurements. A simple bias adjustment procedure on FK As data did not result in a more accurate characterization of depth distribution of As. This indicated that simple error statistics are inadequate for advancing the utility of FKs; rather, an understanding of the complex and multidimensional error structure is required. Regional anisotropy in the spatial dependence of As for the northwest was found to be stronger than the southwest. The correlation length for As concentration in the east–west direction of northwest Bangladesh (i.e. across major river floodplains) was found to be almost twice (158·80 km) that of the north–south direction (along the major axis of Pleistocene deposits) (78·21 km). For the southwest region, the ratio of east–west to north–south correlation lengths ranged from 1·40 to 1·51. For the northwest region, because it is well known to have the lowest concentrations of As countrywide, knowledge of this anisotropy appears to suggest the need for drilling twice as many remediation deep wells in the proximity of an unsafe shallow well in the north–south direction than in the east–west direction. Findings from this study are potentially useful in setting priority areas for emergency testing, distributing remediation resources equitably and formulating a regional water resources strategy for western Bangladesh. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
118.
Xu  Shi-Yu  Lawal  Abiodun Ismail 《Acta Geotechnica》2021,16(3):959-975
Acta Geotechnica - Conventionally, when the method of slice is adopted to assess the earth pressures behind the retaining wall considering a curvilinear failure surface, the mobilized soil mass...  相似文献   
119.
Flood mitigation involves the management and control of floodwater movement, such as redirecting flood runoff through the use of floodwalls and flood gates, rather than trying to prevent floods altogether. The prevention and mitigation of flooding can be studied on three levels: on individual properties, small communities, and whole towns or cities. The current study area is located in Hurghada on the Red Sea, which is considered an important area for coastal tourism. The study area is located at distance 7.50 km from El Gouna city along the Red Sea and east of Hurghada–Al Ismaileya road. The aim of this research is to derive the runoff flow paths across the study area and their flow magnitudes under different rainfall events of 10, 25, 50, and 100 year return periods in order to design the flood mitigation measures to protect such important areas. Field data (e.g., topographic data and rainfall intensities) were collected for the study area. The results indicated that the site is exposed to high flash flood risk and protection work is required. In order to protect the area from flood risks, locations of number of drainage channels and dams were selected and designed based on flood quantity and direction. The proposed mitigation system is capable of protecting this crucial area from flood risks and increases the national income from tourism. This study can be applied in different areas of Egypt and the world.  相似文献   
120.
Geological structures can be of great influence groundwater movement and accumulation in the surface and subsurface, and should therefore be taken into consideration in studies related to groundwater contamination impact. This study attempts to investigate the influence of geological structures on groundwater flow and groundwater salinity in Al Jaaw Plain, United Arab Emirates. A set of thematic maps derived from digital elevation model (DEM), LANDSAT, and Spaceborn Imagine Radar-C/X-Band Synthetic Aperture Radar were enhanced by applying Soble filter with 10 % threshold and equalization enhancement to reveal and map geological structures crosscut the entire region. Drainage pattern was derived from DEM automatically using D8 algorithm. The algorithm determines in which neighboring pixel any water in a central pixel will flow naturally. The trends of geological structures and drainage pattern extracted from remote sensing data were correlated with the spatial variation of hydraulic head, thickness aquifer, and groundwater salinity in the region. The results of the study reveal that the wadi courses, thickness of the aquifer, and topography are structural controlled by NNW–SSE, NE–SW, and ENE–WSW trending fault zones, significantly influencing the groundwater flow and groundwater contamination in Al Jaaw Plain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号