首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   5篇
  国内免费   1篇
地球物理   28篇
地质学   51篇
海洋学   2篇
天文学   7篇
自然地理   3篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   5篇
  2018年   6篇
  2017年   1篇
  2016年   8篇
  2015年   4篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   5篇
  2010年   1篇
  2009年   8篇
  2008年   5篇
  2007年   1篇
  2006年   7篇
  2005年   1篇
  2004年   5篇
  2003年   3篇
  2002年   7篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1979年   1篇
排序方式: 共有91条查询结果,搜索用时 31 毫秒
71.
The 2014–2015 Holuhraun fissure eruption provided a rare opportunity to study in detail the magmatic processes and magma plumbing system dynamics during a 6-month-long, moderate- to large-volume basaltic fissure eruption. In this contribution, we present a comprehensive dataset, including major and trace elements of whole-rock and glassy tephra samples, mineral chemistry, and radiogenic and oxygen isotope analyses from an extensive set of samples (n?=?62) that were collected systematically in several field campaigns throughout the entire eruptive period. We also present the first detailed chemical and isotopic characterization of magmatic sulfides from Iceland. In conjunction with a unique set of geophysical data, our approach provides a detailed temporal and spatial resolution of magmatic processes before and during this eruption. The 2014–2015 Holuhraun magma is compositionally indistinguishable from recent basalts erupted from the Bárðarbunga volcanic system, consistent with seismic observations for magma ascent close to the Bárðarbunga central volcano, followed by dyke propagation to the Holuhraun eruption site. Whole-rock elemental and isotopic compositions are remarkably constant throughout the eruption. Moreover, the inferred depth of the magma reservoir tapped during the eruption is consistently 8?±?5 km, in agreement with geodetic observations and melt inclusion entrapment pressures, but inconsistent with vertically extensive multi-tiered magma storage prior to eruption. The near constancy in the chemical and isotopic composition of the lava is consistent with the efficient homogenization of mantle-derived compositional variability. In contrast, occurrence of different mineral populations, including sulfide globules, which display significant compositional variability, requires a more complex earlier magmatic history. This may include sampling of heterogeneous mantle melts that mixed, crystallized and finally homogenized at mid- to lower-crustal conditions.  相似文献   
72.
To reduce the numerical complexity of inverse solutions to large systems of discretised integral equations in gravimetric geoid/quasigeoid modelling, the surface domain of Green’s integrals is subdivided into the near-zone and far-zone integration sub-domains. The inversion is performed for the near zone using regional detailed gravity data. The farzone contributions to the gravity field quantities are estimated from an available global geopotential model using techniques for a spherical harmonic analysis of the gravity field. For computing the far-zone contributions by means of Green’s integrals, truncation coefficients are applied. Different forms of truncation coefficients have been derived depending on a type of integrals in solving various geodetic boundary-value problems. In this study, we utilise Molodensky’s truncation coefficients to Green’s integrals for computing the far-zone contributions to the disturbing potential, the gravity disturbance, and the gravity anomaly. We also demonstrate that Molodensky’s truncation coefficients can be uniformly applied to all types of Green’s integrals used in solving the boundaryvalue problems. The numerical example of the far-zone contributions to the gravity field quantities is given over the area of study which comprises the Canadian Rocky Mountains. The coefficients of a global geopotential model and a detailed digital terrain model are used as input data.  相似文献   
73.
The main goal of our study is to investigate 3D topography of the Moho boundary for the area of the northern Red Sea including Gulf of Suez and Gulf of Aqaba. For potential field data inversion we apply a new method of local corrections. The method is efficient and does not require trial-and-error forward modeling. To separate sources of gravity and magnetic field in depth, a method is suggested, based on upward and downward continuation. Both new methods are applied to isolate the contribution of the Moho interface to the total field and to find its 3D topography. At the first stage, we separate near-surface and deeper sources. According to the obtained field of shallow sources a model of the horizontal layer above the depth of 7 km is suggested, which includes a density interface between light sediments and crystalline basement. Its depressions and uplifts correspond to known geological structures. At the next stage, we isolate the effect of very deep sources (below 100 km) and sources outside the area of investigation. After subtracting this field from the total effect of deeper sources, we obtain the contribution of the Moho interface. We make inversion separately for the area of rifts (Red Sea, Gulf of Suez and Gulf of Aqaba) and for the rest of the area. In the rift area we look for the upper boundary of low-density, heated anomalous upper mantle. In the rest of the area the field is satisfied by means of topography for the interface between lower crust and normal upper mantle. Both algorithms are applied also to the magnetic field. The magnetic model of the Moho boundary is in agreement with the gravitational one.  相似文献   
74.
Chaotic mixing in noisy Hamiltonian systems   总被引:1,自引:0,他引:1  
This paper summarizes an investigation of the effects of low-amplitude noise and periodic driving on phase-space transport in three-dimensional Hamiltonian systems, a problem directly applicable to systems like galaxies, where such perturbations reflect internal irregularities and/or a surrounding environment. A new diagnostic tool is exploited to quantify the extent to which, over long times, different segments of the same chaotic orbit evolved in the absence of such perturbations can exhibit very different amounts of chaos. First-passage-time experiments are used to study how small perturbations of an individual orbit can dramatically accelerate phase-space transport, allowing 'sticky' chaotic orbits trapped near regular islands to become unstuck on surprisingly short time‐scales. The effects of small perturbations are also studied in the context of orbit ensembles with the aim of understanding how such irregularities can increase the efficacy of chaotic mixing. For both noise and periodic driving, the effect of the perturbation scales roughly logarithmically in amplitude. For white noise, the details are unimportant: additive and multiplicative noise tend to have similar effects and the presence or absence of friction related to the noise by a fluctuation–dissipation theorem is largely irrelevant. Allowing for coloured noise can significantly decrease the efficacy of the perturbation, but only when the autocorrelation time, which vanishes for white noise, becomes so large that there is little power at frequencies comparable with the natural frequencies of the unperturbed orbit. This suggests strongly that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic driving, is a resonance phenomenon. Potential implications for galaxies are discussed.  相似文献   
75.
Imaging diffracted waves can provide useful information about complex subsurface geology and fracture networks. Separation of diffractions from typically more intensive reflected events can be done based on specularity, which measures deviation from Snell’s law. Here, we analyze two formulations of specularity and their applicability to diffraction processing in the presence of anisotropy. We show that the most common definition of specularity, originally introduced for pure modes in isotropic media, remains valid for both pure and converted waves in arbitrarily anisotropic models. The other formulation operates directly with the difference between the slowness projections onto the reflector for the incident and reflected waves. Testing on a VTI (transversely isotropic with a vertical symmetry axis) diffraction ramp model demonstrates that both formulations produce satisfactory results for anisotropic media with appropriate tapering of the specularity gathers. Then separation and imaging of diffractions is performed for the structurally complex VTI Marmousi model. We also analyze the sensitivity of diffractions in the specularity gathers to errors in the symmetry-direction velocity and anellipticity parameter η.  相似文献   
76.
We present the results of a regional study of oxygen and Sr-Nd-Pb isotopes of Pleistocene to Recent arc volcanism in the Kamchatka Peninsula and the Kuriles, with emphasis on the largest caldera-forming centers. The δ18O values of phenocrysts, in combination with numerical crystallization modeling (MELTS) and experimental fractionation factors, are used to derive best estimates of primary values for δ18O(magma). Magmatic δ18O values span 3.5‰ and are correlated with whole-rock Sr-Nd-Pb isotopes and major elements. Our data show that Kamchatka is a region of isotopic diversity with high-δ18O basaltic magmas (sampling mantle to lower crustal high-δ18O sources), and low-δ18O silicic volcanism (sampling low-δ18O upper crust). Among one hundred Holocene and Late Pleistocene eruptive units from 23 volcanic centers, one half represents low-δ18O magmas (+4 to 5‰). Most low-δ18O magmas are voluminous silicic ignimbrites related to large >10 km3 caldera-forming eruptions and subsequent intracaldera lavas and domes: Holocene multi-caldera Ksudach volcano, Karymsky and Kurile Lake-Iliinsky calderas, and Late Pleistocene Maly Semyachik, Akademy Nauk, and Uzon calderas. Low-δ18O magmas are not found among the less voluminous products of stratovolcano eruptions and these volcanoes do not show drastic changes in δ18O during their evolution. Additionally, high-δ18O(magma) of +6.0 to 7.5‰ are found among basalts and basaltic andesites of Bezymianny, Shiveluch, Avachinsky, and Koryaksky volcanoes, and dacites and rhyolites of Opala and Khangar volcanoes (7.1-8.0‰). Phenocrysts in volcanic rocks from the adjacent Kurile Islands (ignimbrites and lavas) define normal-δ18O magmas. The widespread and volumetric abundance of low-δ18O magmas in the large landmass of Kamchatka is possibly related to a combination of near-surface volcanic processes, the effects of the last glaciation on high-latitude meteoric waters, and extensive geyser and hydrothermal systems that are matched only by Iceland. Sr and Pb isotopic compositions of normal and low-δ18O, predominantly silicic, volcanic rocks show negative correlation with δ18O, similar to the trend in Iceland. This indicates that low-δ18O volcanic rocks are largely produced by remelting of older, more radiogenic, hydrothermally altered crust that suffered δ18O-depletion during >2 My-long Pleistocene glaciation. The regionally-distributed high-δ18O values for basic volcanism (ca. + 6 to +7.5‰) in Kamchatka cannot be solely explained by high-δ18O slab fluid or melt (± sediment) addition in the mantle, or local subduction of hydrated OIB-type crust of the Hawaii-Emperor chain. Overall, Nd-Pb isotope systematics are MORB-like. Voluminous basic volcanism (in the Central Kamchatka Depression in particular) requires regional, though perhaps patchy, remobilization of thick (30-45 km) Mesozoic-Miocene arc roots, possibly resulting from interaction with hot (ca. 1300°C), wedge-derived normal-δ18O, low-87Sr/86Sr basalts and from dehydration melting of lower crustal metabasalts, variably high in δ18O and 87Sr/86Sr.  相似文献   
77.
In previous publications, we presented a waveform-inversion algorithm for attenuation analysis in heterogeneous anisotropic media. However, waveform inversion requires an accurate estimate of the source wavelet, which is often difficult to obtain from field data. To address this problem, here we adopt a source-independent waveform-inversion algorithm that obviates the need for joint estimation of the source signal and attenuation coefficients. The key operations in that algorithm are the convolutions (1) of the observed wavefield with a reference trace from the modelled data and (2) of the modelled wavefield with a reference trace from the observed data. The influence of the source signature on attenuation estimation is mitigated by defining the objective function as the ℓ2-norm of the difference between the two convolved data sets. The inversion gradients for the medium parameters are similar to those for conventional waveform-inversion techniques, with the exception of the adjoint sources computed by convolution and cross-correlation operations. To make the source-independent inversion methodology more stable in the presence of velocity errors, we combine it with the local-similarity technique. The proposed algorithm is validated using transmission tests for a homogeneous transversely isotropic model with a vertical symmetry axis that contains a Gaussian anomaly in the shear-wave vertical attenuation coefficient. Then the method is applied to the inversion of reflection data for a modified transversely isotropic model from Hess. It should be noted that due to the increased nonlinearity of the inverse problem, the source-independent algorithm requires a more accurate initial model to obtain inversion results comparable to those produced by conventional waveform inversion with the actual wavelet.  相似文献   
78.
Aeolian processes – the erosion, transport, and deposition of sediment by wind – play important geomorphological and ecological roles in drylands. These processes are known to impact the spatial patterns of soil, nutrients, plant-available water, and vegetation in many dryland ecosystems. Tracers, such as rare earth elements and stable isotopes have been successfully used to quantify the transport and redistribution of sediment by aeolian processes in these ecosystems. However, many of the existing tracer techniques are labor-intensive and cost-prohibitive, and hence simpler alternative approaches are needed to track aeolian redistribution of sediments. To address this methodological gap, we test the applicability of a novel metal tracer-based methodology for estimating post-fire aeolian sediment redistribution, using spatio-temporal measurements of low-field magnetic susceptibility (MS). We applied magnetic metal tracers on soil microsites beneath shrub vegetation in recently burned and in control treatments in a heterogeneous landscape in the Chihuahuan desert (New Mexico, USA). Our results indicate a spatially homogeneous distribution of the magnetic tracers on the landscape after post-burn wind erosion events. MS decreased after wind erosion events on the burned shrub microsites, indicating that these areas functioned as sediment sources following the wildfire, whereas they are known to be sediment sinks in the undisturbed (e.g. not recently burned) ecosystem. This experiment represents the first step toward the development of a cost-effective and non-destructive tracer-based approach to estimate the transport and redistribution of sediment by aeolian processes. © 2018 John Wiley & Sons, Ltd.  相似文献   
79.
80.
This work considers petrogenesis of the largest Holocene basaltic fissure eruptions of Iceland, which are also the largest in the world: Laki (1783-84 AD, 15 km3), Eldgjá (934 AD, 18 km3), Veidivötn (900, 1480 AD, multiple eruptions, >2 km3), Núpahraun (ca. 4000 BP, >1 km3) and Thjórsárhraun (ca 8000 BP, >20 km3). We present oxygen isotope laser fluorination analyses of 55 individual and bulk olivine crystals, coexisting individual and bulk plagioclase phenocrysts, and their host basaltic glasses with average precision of better than 0.1‰ (1SD). We also report O isotope analyses of cores and rims of 61 olivine crystals by SIMS with average precision on single spots of 0.24‰ (1SD) in 13 samples coupled with electron microprobe data for major and trace elements in these olivines. Within each individual sample, we have found that basaltic glass is relatively homogeneous with respect to oxygen isotopes, plagioclase phenocrysts exhibit crystal to crystal variability, while individual olivines span from the values in equilibrium with the low-δ18O matrix glass to those being three permil higher in δ18O than the equilibrium. Olivine cores with maximum value of 5.2‰ are found in many of these basalts and suggest that the initial magma was equilibrated with normal-δ18O mantle. No olivines or their intracrystalline domains are found with bulk or spot value higher than those found in MORB olivines. The δ18O variability of 0.3-3‰ exists for olivine grains from different lavas, and variable core-to-rim oxygen isotopic zoning is present in selected olivine grains. Many olivines in the same sample are not zoned, while a few grains are zoned with respect to oxygen isotopes and exhibit small core-to-core variations in Fe-Mg, Ni, Mn, Ca. Grains that are zoned in both Mg# and δ18O exhibit positive correlation of these two parameters. Electron microprobe analysis shows that most olivines equilibrated with the transporting melt, and thin Fe-richer rim is present around many grains, regardless of the degree of olivine-melt oxygen isotope disequilibrium.The preservation of isotopic and compositional zoning in selected grains, and subtle to severe Δ18O (melt-olivine) and Δ18O (plagioclase-olivine) disequilibria suggests rather short crystal residence times of years to centuries. Synglacially-altered upper crustal, tufaceous hyaloclastites of Pleistocene age serve as a viable source for low-δ18O values in Holocene basalts through assimilation, mechanical and thermal erosion, and devolatilization of stoped blocks. Cumulates formed in response to cooling during assimilation, and xenocrysts derived from hyaloclastites, contribute to the diverse δ18O crystalline cargo. The magma plumbing systems under each fissure are likely to include a network of interconnected dikes and sills with high magma flow rates that contribute to the efficacy of magmatic erosion of large quantities (10-60% mass) of hyaloclastites required by isotopic mass balance.Olivine diversity and the pervasive lack of phenocryst-melt oxygen isotopic equilibrium suggest that a common approach of analyzing bulk olivine for oxygen isotopes, as a proxy for the basaltic melt or to infer mantle δ18O value, needs to proceed with caution. The best approach is to analyze olivine crystals individually and demonstrate their equilibrium with matrix.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号