首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
大气科学   3篇
地球物理   7篇
地质学   9篇
海洋学   1篇
天文学   2篇
自然地理   3篇
  2020年   2篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2009年   4篇
  2007年   1篇
  2003年   2篇
  1999年   1篇
  1978年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
11.
In this paper, seismic risk scenarios for Bucharest, the capital city of Romania, are proposed and assessed. Bucharest has one of the highest seismic risk levels in Europe, and this is due to a combination of relatively high seismic hazard and a building stock built mainly before the devastating Vrancea 1977 earthquake. In this study, the seismic risk of Bucharest is assessed using the most recent information regarding the characteristics of the residential building stock. The ground motion amplitudes are evaluated starting from random fields obtained by coupling a ground motion model derived for the Vrancea intermediate-depth seismic source with a spatial correlation model. The seismic risk evaluation method applied in this study is based on the well-known macroseismic method. For several structural typologies, the vulnerability parameters are evaluated based on a damage survey performed on 18,000 buildings in Bucharest after the March 1977 earthquake. Subsequently, the risk metrics are compared with those from other studies in the literature that apply a different risk assessment methodology in order to gain a better view of the uncertainties associated with a seismic risk study at city level. Finally, the impact of several Vrancea intermediate-depth earthquake scenarios is evaluated and the results show that the earthquake which has the closest epicenter to Bucharest appears to be the most damaging.  相似文献   
12.
ABSTRACT

The aim of this study is to analyse the seasonal characteristics of four Palmer indices calculated on the basis of data from 27 meteorological stations in Romania, and the impact of these indices on river discharges in the period 1931–1998. Our research also tests the influence of large-scale atmospheric circulation on these indices and on discharge. For each season, developments in the empirical orthogonal functions (EOF) and multivariate EOF (MEOF) are achieved. The MEOF representation highlights the overall characteristics of the four Palmer indices. It maximizes specific information for each season compared with individual information of each Palmer index. We then identify geographical areas with homogeneous distribution, taking into account both the discharge distribution and the rotated EOF components of each Palmer index. Finally, we analysed the impact of large-scale atmospheric circulation on hydro-climatic events in Romania by means of the Greenland-Balkan Oscillation Index (GBOI), which is shown to have a greater influence on southeastern Europe than the North Atlantic Oscillation Index (NAOI).  相似文献   
13.
Application of the cross-borehole flow method, in which short pumping cycles in one borehole are used to induce time-transient flow in another borehole, demonstrated that a simple hydraulic model can characterize the fracture connections in the bedrock mass between the two boreholes. The analysis determines the properties of fracture connections rather than those of individual fractures intersecting a single borehole; the model contains a limited number of adjustable parameters so that any correlation between measured and simulated flow test data is significant. The test was conducted in two 200-m deep boreholes spaced 21?m apart in the Melechov Granite in the Bohemian-Moravian Highland, Czech Republic. Transient flow was measured at depth stations between the identified transmissive fractures in one of the boreholes during short-term pumping and recovery periods in the other borehole. Simulated flows, based on simple model geometries, closely matched the measured flows. The relative transmissivity and storage of the inferred fracture connections were corroborated by tracer testing. The results demonstrate that it is possible to assess the properties of a fracture flow network despite being restricted to making measurements in boreholes in which a local population of discrete fractures regulates the hydraulic communication with the larger-scale aquifer system.  相似文献   
14.
Two karstic discharge areas, Río Verde (RV) and Ciénega de Cabezas (CC), located in a distance of 80 km to each other are chosen to determine the influence of local variations in geology and climatic condition on water chemistry and to examine if the groundwater, supplying the discharge areas, undergoes the same evolution and has a common source. Both study areas are situated on the carbonate platform Valles-San Luis Potosí and comprise a similar geological setting, but despite of their spatial vicinity the climate is semiarid in RV and humid in CC presenting an important factor on the amount of discharge and the concentrations of ions in the discharge. The investigation encompasses discharge, hydrochemical and physico-chemical parameter evaluations as well as the determination of saturation indices, hydrochemical modelling and water type characterization of surface water samples to derive knowledge of the groundwater systems. Scatterplots and saturation indices were used to proof the influence of lithological variability. Both study areas represent normal alkaline water, marked by high concentrations of calcium and magnesium with varying concentrations of bicarbonate and sulphate. In RV, the water interacts with dolomite rocks and gypsum layers, whereas in CC the dolomite content is depleted and the influence of limestone rocks increases. The climatic impact on the groundwater in RV is noticeable by the increase in ionic concentrations due to higher evaporation. In CC the higher amount of precipitation dilutes the groundwater and causes decreasing ionic concentrations.  相似文献   
15.
In this study extreme droughts and extremely wet periods in the Danube upper and middle basin (DUMB) have been highlighted with specific indices. The most widely used indices have been considered to estimate both the dry and wet phenomena severity and the frequency or spatio‐temporal extension. The climatic condition of 15 meteorological stations situated in the Danube basin has been evaluated using four indices: Palmer Drought Severity Index (PDSI), Palmer Hydrological Drought Index (PHDI), Weighted PDSI (WPLM) and Palmer Z‐index (ZIND). The four indices have been analysed separately for each of the four seasons between 1901 and 2000. First the internal structure of the time series of the four indices has been analysed separately. Then the overall temporal characteristic has been analysed by means of the principal component of the Multivariate Empirical Orthogonal Functions decomposition of the four indices (PC1‐MEOF). For the discharge in the Danube lower basin, station Orsova has been chosen, representing an integrator of the discharges from the DUMB. A very close connection has been found between Palmer indices and Danube discharge in all seasons (with correlation coefficients greater then 0.80) excepting the spring season. A classification in five classes of both the four indices separately and the PC1‐MEOF has been achieved in order to highlight extreme events. The impact of phenomena quantified by Palmer indices in DUMB upon discharges in Danube lower basin is evident. It was demonstrated in this study that the Greenland‐Balkan Oscillation (GBO) influences the south‐east European hydro‐climatic regime more than the North Atlantic Oscillation (NAO) Index. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
16.
Temperature data from nine boreholes in the Carpathian orogen in Romania were used to obtain information on the ground surface temperature history (GSTH) in the last 250?years. The temperature measurements were taken with a thermistor probe (sensitivity in the 10 mK range) using the stop-and-go technique, at 10 m intervals, in the depth range of 20–580?m. The least squares inverse modelling approach of Tarantola and Valette (J Geophys 50:159–170, 1982) was used to infer the GSTH. Long-term air temperature records available from the Romanian weather station network were used as a comparison term for the first 100–150?years of the GSTH, and as a forcing function in a POM-SAT model that combines borehole temperature profiles (BTPs) and meteorological time series (surface air temperature, SAT) to produce information on the so-called pre-observational mean (POM). Results from a global circulation model for the Romanian area are incorporated in the discussion as well.  相似文献   
17.

In this paper, seismic risk scenarios for Bucharest, the capital city of Romania, are proposed and assessed. Bucharest has one of the highest seismic risk levels in Europe, and this is due to a combination of relatively high seismic hazard and a building stock built mainly before the devastating Vrancea 1977 earthquake. In this study, the seismic risk of Bucharest is assessed using the most recent information regarding the characteristics of the residential building stock. The ground motion amplitudes are evaluated starting from random fields obtained by coupling a ground motion model derived for the Vrancea intermediate-depth seismic source with a spatial correlation model. The seismic risk evaluation method applied in this study is based on the well-known macroseismic method. For several structural typologies, the vulnerability parameters are evaluated based on a damage survey performed on 18,000 buildings in Bucharest after the March 1977 earthquake. Subsequently, the risk metrics are compared with those from other studies in the literature that apply a different risk assessment methodology in order to gain a better view of the uncertainties associated with a seismic risk study at city level. Finally, the impact of several Vrancea intermediate-depth earthquake scenarios is evaluated and the results show that the earthquake which has the closest epicenter to Bucharest appears to be the most damaging.

  相似文献   
18.
Climate models predict substantial summer precipitation reductions in Europe and the Mediterranean region in the twenty-first century, but the extent to which these models correctly represent the mechanisms of summertime precipitation in this region is uncertain. Here an analysis is conducted to compare the observed and simulated impacts of the dominant large-scale driver of summer rainfall variability in Europe and the Mediterranean, the summer North Atlantic Oscillation (SNAO). The SNAO is defined as the leading mode of July–August sea level pressure variability in the North Atlantic sector. Although the SNAO is weaker and confined to northern latitudes compared to its winter counterpart, with a southern lobe located over the UK, it significantly affects precipitation in the Mediterranean, particularly Italy and the Balkans (correlations of up to 0.6). During high SNAO summers, when strong anticyclonic conditions and suppressed precipitation prevail over the UK, the Mediterranean region instead is anomalously wet. This enhanced precipitation is related to the presence of a strong upper-level trough over the Balkans—part of a hemispheric pattern of anomalies that develops in association with the SNAO—that leads to mid-level cooling and increased potential instability. Neither this downstream extension nor the surface influence of the SNAO is captured in the two CMIP3 models examined (HadCM3 and GFDL-CM2.1), with weak or non-existent correlations between the SNAO and Mediterranean precipitation. Because these models also predict a strong upward SNAO trend in the future, the error in their representation of the SNAO surface signature impacts the projected precipitation trends. In particular, the attendant increase in precipitation that, based on observations, should occur in the Mediterranean and offset some of the non-SNAO related drying does not occur. Furthermore, the fact that neither the observed SNAO nor summer precipitation in Europe/Mediterranean region exhibits any significant trend so far (for either the full century or the recent half of the record) does not increase our confidence in these model projections.  相似文献   
19.
Octodontid rodents have a long evolutionary history in arid landscapes of South America. The red vizcacha rat, Tympanoctomys barrerae , is a monotypic, micro-endemic species that inhabits salt pan-sand dune habitats in west-central Argentina. Its natural history is almost unknown. We present an analysis of the ecology, morphology, behavior, and physiology of the red vizcacha rat and assess the overall degree of convergence of this species with rodents that inhabit similar habitats in different deserts. Our results show that Tympanoctomys barrerae is highly adapted to salt flat basin habitats. Its diet of halophytic vegetation with a high salt content, and physiological and anatomical traits related to salt consumption, are similar to those found in some members of the families Heteromyidae (Dipodomys microps) of North America, and Muridae (Psammomys obesus and Rhombomys opimus) of Africa and Asia. Similarities include feeding behavior, diet composition, kidney morphology, and urine concentration, among other traits. Tympanoctomys barrerae is more similar to these desert rodents than it is to confamilials that do not feed on halophytes.  相似文献   
20.
Future climate evolution is of primary importance for the societal, economical, political orientations and decision-making. It explains the increasing use of climate projections as input for quantitative impact studies, assessing vulnerability and defining adaptation strategies in different sectors. Here we analyse 17 national and representative use cases so as to identify the diversity of the demand for climate information depending on user profiles as well as the best practices, methods and tools that are needed to answer the different requests. A particular emphasis is put on the workflow that allows to translate climate data into suitable impact data, the way to deal with the different sources of uncertainty and to provide a suited product to users. We identified three complementary tools to close the gap between climate scientists and user needs: an efficient interface between users and providers; an optimized methodology to handle user requests and a portal to facilitate access to data and elaborated products. We detail in the paper how these three tools can limit the intervention of experts, educate users, and lead to the production of useful information. This work provides the basis on which the ENES (European Network for Earth System Modelling) Portal Interface for the Climate Impact Communities is built.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号