首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   1篇
  国内免费   2篇
测绘学   3篇
大气科学   2篇
地球物理   20篇
地质学   40篇
海洋学   7篇
天文学   5篇
综合类   3篇
自然地理   3篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   6篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   6篇
  2008年   1篇
  2007年   8篇
  2006年   7篇
  2005年   4篇
  2004年   1篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1985年   1篇
  1982年   1篇
  1953年   1篇
  1949年   1篇
  1948年   3篇
  1941年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
71.
Black and white dolomite crystals (mm to cm width) of different isotopic composition are associated with Triassic diapirism in central Tunisia, as well as with evaporite minerals and clays. The white dolomites occur mostly in the Jabal Hadifa diapir near the contact with Cretaceous limestones, whereas the smaller black dolomites occur in the Jabal Hamra diapir. The former dolomite has a narrow range of δ18O and δ13C values (− 3.83‰ to − 6.60‰ VPDB for δ18O; − 2.11‰ to − 2.83‰ VPDB for δ13C), whereas the latter dolomite has a wider range and more depleted values (− 4.92‰ to − 9.97‰ for δ18O; − 0.55‰ to − 6.08‰ for δ13C). However, the 87Sr / 86Sr ratios of most of the samples are near Triassic seawater values. Dolomite formation is due to at least two different fluids. The main fluid originated from deeper hydrothermal or basinal sources related to the Triassic saliferous rocks and ascended through faults during the diapiric intrusion. The second, less important fluid source is related to meteoric water originating from Cretaceous rocks.  相似文献   
72.
The city of Burdur, which is built on an alluvium aquifer, is located in one of the most seismically active zones in southwestern Turkey. The soil properties in the study site are characterized by unconsolidated and water-saturated sediments including silty, clayey and sandy units, and shallow groundwater level is the other characteristic of the site. Thus, the city is under soil liquefaction risk during a large earthquake. A resistivity survey including 189 vertical electrical sounding (VES) measurements was carried out in 2000 as part of a multi-disciplinary project aiming to investigate settlement properties in Burdur city and its vicinity. In the present study, the VES data acquired by using a Schlumberger array were re-processed with 1D and 2D inversion techniques to determine liquefaction potential in the study site. The results of some 1D interpretations were compared to the data from several wells drilled during the project. Also, the groundwater level map that was previously obtained by hydrological studies was extended toward north by using the resistivity data. 2D least-squares inversions were performed along nine VES profiles. This provided very useful information on vertical and horizontal extends of geologic units and water content in the subsurface. The study area is characterized by low resistivity distribution (<150 Ωm) originating from high fluid content in the subsurface. Lower resistivity (3–30 Ωm) is associated with the Quaternary and the Tertiary lacustrine sediments while relatively high resistivity (40–150 Ωm) is related to the Quaternary alluvial cone deposits. This study has also shown that the resistivity measurements are useful in the estimation of liquefaction risk in a site by providing information on the groundwater level and the fluid content in the subsurface. Based on this, we obtained a liquefaction hazard map for the study area. The liquefaction potential was classified by considering the resistivity distributions from 2D inversion of the VES profiles, the types of the sediments and the extended groundwater level map. According to this map, the study area was characterized by high liquefaction hazard risk.  相似文献   
73.
The rapidly developing mining sector in recent years has also brought environmental problems together. At the beginning of these problems are mine process wastes produced in high quantities from mines every year. The waste material at 90% and the concentrate chromite at 10% are obtained in the chromite ore enrichment plants. This significant amount of waste creates pollution in nature visually and physically. The aim of the study is to determine the advantages of using foamed concrete as a building material, to reduce the production cost of foamed concrete, to produce alternative solutions for rehabilitation, and to eliminate environmental pollution. The chromite enrichment wastes obtained from Fethiye, Köyce?iz, Denizli and Burdur regions were used as aggregates in the production of foamed concrete. In this study, compressive strength experiments were carried out according to TS EN 1354, thermal conductivity experiments were carried out according to TS EN 12664. As a result, it has been observed that chromite waste (dunite) can be used in the production of foamed concrete under certain conditions.  相似文献   
74.
A backpropagation artificial neural network (ANN) model is developed to predict the secant friction angle of residual and fully softened soils, using data reported by Stark et al. (J Geotech Geoenviron Eng ASCE 131:575–588, 2005). In the ANN model, index properties such as liquid limit, plastic limit, activity, clay fraction and effective normal stress are used as input variables while secant residual friction angle is used as output variable. The model is verified using data that were not used for model training and testing. The results also indicate that the secant residual friction angle of cohesive soils can be predicted quite accurately using liquid limit, clay fraction and effective normal stress as input variables with R 2 = 0.93. The sensitivity analysis results indicate that plastic limit and activity have no appreciable effect on ANN predicted secant friction angles. The secant friction angle predictions of the ANN model were also compared with those of Stark’s et al. (2005) curves and the empirical formulas suggested for the same data sets by Wright (Evaluation of soil shear strengths for slope and retaining wall stability with emphasis on high plasticity clays, 2005). The comparison shows that the ANN model predictions are very close to those suggested by the Stark et al. (2005) curves but much better than the prediction of Wright’s (2005) empirical equations. The results also show that ANN is an alternative powerful tool to predict the secant friction angle of soils.  相似文献   
75.
76.
An important aspect of any non-linear inversion method is the generation of a suitable or good initial model as this controls the rate of convergence and accuracy of the result. To overcome the problem, a numerical method is presented for direct interpretation of magnetotelluric sounding data based on the frequency-normalized impedance (FNI) function. The expressions used to calculate the parameters are developed, first for a two-layer case under the assumption that deeper layers do not contribute to the early part of the FNI curve, and they are then generalized for an n -layer situation. The parameters of the first layer are computed by using successive sample values and the final estimate is obtained from the arithmetic mean of selected values by excluding unacceptable results in the logarithmic space. The top layer is then removed using a reduction equation. The repetition of the procedure on successive branches of the FNI function gives successive layer parameters, the resistivity of the substratum being obtained at the final step, when the reduction equation becomes equal to the square root of that resistivity.   The proposed method can be used as a complementary method for iterative inversion as it creates an initial guess which is close to the optimal solution. The solution produced by the direct interpretation may also be modified by the interpreter to incorporate prior geological information before being input to iterative interpretation schemes.  相似文献   
77.
78.
A magnetotelluric survey was performed at the Çatalca Region, west of Istanbul, Turkey with the aim of investigating geoelectrical properties of the upper crust near the Çatalca Fault and its vicinity. Broadband magnetotelluric data were collected at nine sites along a single southwest-northeast profile to image the electrical resistivity structure from surface to the 5 km depth. The dimensionality of the data was examined through tensor decompositions and highly two-dimensional behavior of the data is shown. Following the tensor decompositions, two-dimensional inversions were carried out where E-polarization, B-polarization and tipper data were utilized to construct electrical resistivity models. The results of the inversions suggest: a) the Çatalca Fault extends from surface to 5 km depth as a conductive zone dipping to southwest; b) the thickness of the sedimentary cover is increasing from SW to NE to 700 m with low resistivity values between 1–100 Ωm; c) the crystalline basement below the sedimentary unit is very resistive and varies between 2000–100000 Ωm; d) a SW-dipping resistivity boundary in the northeastern part of our profile may represent the West Black Sea Fault.  相似文献   
79.
80.
The Geoelectrical Structure of Northwestern Anatolia,Turkey   总被引:1,自引:0,他引:1  
The magnetotelluric method has been employed to generate a geoelectrical model that will reveal the rich geological pattern and dynamic character of western and northwestern Anatolia, Turkey. Magnetotelluric data were collected from 53 sites along a profile of 290 km from the Dardanelles to the Ala?ehir Graben. Magnetotelluric data were in the range of 0.00055 Hz to 320 Hz. The models were obtained through 2-D joint inversion of transverse electric and transverse magnetic modes. Lateral changes in geoelectrical models are verified by using gravity and magnetic data. In addition, some of the seismological data presented here agree with proposed models that suggest a brittle-ductile structure boundary at a depth of 20 km. Generally speaking, a regional extensional regime caused reduction in the thickness of the crust and consequent uplift towards the south. The constructed model delineates the western part of the North Anatolian Fault Zone along the Biga Peninsula. The current patterns of volcanic activity on the Biga Peninsula and at Kula are related to conductive spots presented in the models. The border of the Gördes Basin, located between the Izmir - Ankara suture zone and the Menderes Massif, is also well delineated. The North Anatolian Fault Zone presents a pattern in which density and susceptibility anomalies attain relatively high values. Fillings covering most of the surface have lower density and susceptibility values than those of underlying structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号