首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   398篇
  免费   13篇
  国内免费   18篇
测绘学   6篇
大气科学   40篇
地球物理   117篇
地质学   153篇
海洋学   42篇
天文学   48篇
综合类   4篇
自然地理   19篇
  2022年   5篇
  2021年   11篇
  2020年   10篇
  2019年   8篇
  2018年   18篇
  2017年   12篇
  2016年   24篇
  2015年   11篇
  2014年   20篇
  2013年   22篇
  2012年   20篇
  2011年   19篇
  2010年   23篇
  2009年   25篇
  2008年   21篇
  2007年   23篇
  2006年   13篇
  2005年   17篇
  2004年   18篇
  2003年   12篇
  2002年   19篇
  2001年   12篇
  2000年   9篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   6篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1973年   2篇
  1964年   1篇
  1957年   1篇
排序方式: 共有429条查询结果,搜索用时 15 毫秒
411.
Dynamic effects in a saturated layered soil deposit: centrifuge modeling   总被引:1,自引:0,他引:1  
The dynamic response of a saturated layered soil deposit was modeled on the Princeton University geotechnical centrifuge using various centrifugal acceleration levels. The layered soil deposit consists of a saturated Nevada sand layer overlaid by a silt layer of low permeability. Measured acceleration and pore-water pressure time histories are used to validate the scaling laws used in interpreting dynamic centrifugal modeling test results. Careful measurements of the settlements at the silt surface are performed using a non-contact displacement transducer, and comparisons are made with measurements obtained with a standard linear voltage displacement transducer. Finally, the experimental results are used to verify the validity of the numerical procedures encompassed in the computer code DYNAFLOW.  相似文献   
412.
Differentiation between benthic habitats, particularly seagrass and macroalgae, using satellite data is complicated because of water column effects plus the presence of chlorophyll-a in both seagrass and algae that result in similar spectral patterns. Hyperspectral imager for the coastal ocean data over the Indian River Lagoon, Florida, USA, was used to develop two benthic classification models, SlopeRED and SlopeNIR. Their performance was compared with iterative self-organizing data analysis technique and spectral angle mapping classification methods. The slope models provided greater overall accuracies (63–64%) and were able to distinguish between seagrass and macroalgae substrates more accurately compared to the results obtained using the other classifications methods.  相似文献   
413.
Measurements in the atmospheric surface layer are generally made with point sensors located in the first few tens of metres. In most cases, however, these measurements are not representative of the whole surface layer. Standard Doppler sodars allow a continuous display of the turbulent thermal structure and wind profiles in the boundary layer up to 1000 m, with a few points, if any, in the surface layer. To overcome these limitations a new sodar configuration is proposed that allows for a higher resolution in the surface layer. Because of its capabilities (echo recording starting at 2 m, echo intensity vertical resolution of approximately 2 m, temporal resolution of 1 s) this sodar is called the surface-layer mini-sodar (SLM-sodar). Features and capabilities of the SLM-sodar are described and compared with the sodar. The comparison of the thermal vertical structure given by the SLM-sodar and the sodar provides evidence that, in most cases, the surface layer presents a level of complexity comparable to that of the entire boundary layer. Considering its high vertical resolution, the SLM-sodar is a promising system for the study of the nocturnal surface layer. The nocturnal SLM-sodar measurements have shown that, depending on wind speed, the structure of the surface layer may change substantially within a short time period. At night, when the wind speed is greater than 3 m s−1, mechanical mixing destroys the wavy structure present in the nocturnal layer. Sonic anemometer measurements have shown that, in such cases, also the sensible heat flux varies with height, reaching a peak in correspondence with the wind speed peak. Under these conditions the assumption of horizontal homogeneity of the surface layer and the choice of the averaging time need to be carefully treated.  相似文献   
414.
415.
We design a velocity–porosity model for sand-shale environments with the emphasis on its application to petrophysical interpretation of compressional and shear velocities. In order to achieve this objective, we extend the velocity–porosity model proposed by Krief et al., to account for the effect of clay content in sandstones, using the published laboratory experiments on rocks and well log data in a wide range of porosities and clay contents. The model of Krief et al. works well for clean compacted rocks. It assumes that compressional and shear velocities in a porous fluid-saturated rock obey Gassmann formulae with the Biot compliance coefficient. In order to use this model for clay-rich rocks, we assume that the bulk and shear moduli of the grain material, and the dependence of the compliance on porosity, are functions of the clay content. Statistical analysis of published laboratory data shows that the moduli of the matrix grain material are best defined by low Hashin–Shtrikman bounds. The parameters of the model include the bulk and shear moduli of the sand and clay mineral components as well as coefficients which define the dependence of the bulk and shear compliance on porosity and clay content. The constants of the model are determined by a multivariate non-linear regression fit for P- and S-velocities as functions of porosity and clay content using the data acquired in the area of interest. In order to demonstrate the potential application of the proposed model to petrophysical interpretation, we design an inversion procedure, which allows us to estimate porosity, saturation and/or clay content from compressional and shear velocities. Testing of the model on laboratory data and a set of well logs from Carnarvon Basin, Australia, shows good agreement between predictions and measurements. This simple velocity-porosity-clay semi-empirical model could be used for more reliable petrophysical interpretation of compressional and shear velocities obtained from well logs or surface seismic data.  相似文献   
416.
A new picromerite-group mineral, nickelpicromerite, K2Ni(SO4)2?·?6H2O (IMA 2012–053), was found at the Vein #169 of the Ufaley quartz deposit, near the town of Slyudorudnik, Kyshtym District, Chelyabinsk area, South Urals, Russia. It is a supergene mineral that occurs, with gypsum and goethite, in the fractures of slightly weathered actinolite-talc schist containing partially vermiculitized biotite and partially altered sulfides: pyrrhotite, pentlandite, millerite, pyrite and marcasite. Nickelpicromerite forms equant to short prismatic or tabular crystals up to 0.07 mm in size and anhedral grains up to 0.5 mm across, their clusters or crusts up to 1 mm. Nickelpicromerite is light greenish blue. Lustre is vitreous. Mohs hardness is 2–2½. Cleavage is distinct, parallel to {10–2}. D meas is 2.20(2), D calc is 2.22 g cm?3. Nickelpicromerite is optically biaxial (+), α?=?1.486(2), β?=?1.489(2), γ?=?1.494(2), 2Vmeas =75(10)°, 2Vcalc =76°. The chemical composition (wt.%, electron-microprobe data) is: K2O 20.93, MgO 0.38, FeO 0.07, NiO 16.76, SO3 37.20, H2O (calc.) 24.66, total 100.00. The empirical formula, calculated based on 14 O, is: K1.93Mg0.04Ni0.98S2.02O8.05(H2O)5.95. Nickelpicromerite is monoclinic, P21/c, a?=?6.1310(7), b?=?12.1863(14), c?=?9.0076(10) Å, β?=?105.045(2)°, V?=?649.9(1) Å3, Z?=?2. Eight strongest reflections of the powder XRD pattern are [d,Å-I(hkl)]: 5.386–34(110); 4.312–46(002); 4.240–33(120); 4.085–100(012, 10–2); 3.685–85(031), 3.041–45(040, 112), 2.808–31(013, 20–2, 122), 2.368–34(13–3, 21–3, 033). Nickelpicromerite (single-crystal X-ray data, R?=?0.028) is isostructural to other picromerite-group minerals and synthetic Tutton’s salts. Its crystal structure consists of [Ni(H2O)6]2+ octahedra linked to (SO4)2? tetrahedra via hydrogen bonds. K+ cations are coordinated by eight anions. Nickelpicromerite is the product of alteration of primary sulfide minerals and the reaction of the acid Ni-sulfate solutions with biotite.  相似文献   
417.
The island of Korčula, which has an area of 271.47 km2 is located along the north-eastern coast of the Adriatic Sea. Due to the Mediterranean climate, size and karst geology its water resources are very scarce. This paper describes the natural features of the island (air temperature, precipitation, geology, hydrogeology and groundwater) which are important for the water appearance and its distribution in time and space. The water supply of the island has been managed in the following ways: through a pipeline from the mainland, by drawing groundwater and by rain harvesting. Tourism causes high seasonal water needs which are barely met by the existing water supply system. Therefore, present water resource management on the island must be improved. The paper also presents mathematical programming scheme to get optimal costs and benefits of water exploitation on the island. Besides economic aspect, linear programming is applied to social and ecological objectives, as well. This study suggests that island’s water management should be primarily based on wisely using its proper water resources.  相似文献   
418.
Borehole seismic addresses the need for high‐resolution images and elastic parameters of the subsurface. Full‐waveform inversion of vertical seismic profile data is a promising technology with the potential to recover quantitative information about elastic properties of the medium. Full‐waveform inversion has the capability to process the entire wavefield and to address the wave propagation effects contained in the borehole data—multi‐component measurements; anisotropic effects; compressional and shear waves; and transmitted, converted, and reflected waves and multiples. Full‐waveform inversion, therefore, has the potential to provide a more accurate result compared with conventional processing methods. We present a feasibility study with results of the application of high‐frequency (up to 60 Hz) anisotropic elastic full‐waveform inversion to a walkaway vertical seismic profile data from the Arabian Gulf. Full‐waveform inversion has reproduced the majority of the wave events and recovered a geologically plausible layered model with physically meaningful values of the medium.  相似文献   
419.
Montane (alpine) areas are generally of high value for nature conservation. Such environments and the habitats they support are dynamic and often fragile. They are vulnerable to disturbance from a range of human activities and are responsive to climate changes over short and long timescales. Biodiversity and conservation values are closely linked to geological history, geomorphological processes and soils, and it is crucial that management systems are based on understanding these links.
There are many similarities between the Cairngorm Mountains (Scotland), the Giant Mountains (Czech Republic) and Abisko Mountains (Sweden) in terms of geology, geomorphology, ecology, links with biodiversity and high conservation importance. Comparable pressures and management issues involve, to varying degrees, a history of human use and impacts from deforestation, pasturing, grazing, recreation and atmospheric pollution. Landscape change therefore involves a complex interplay between natural and anthropogenic factors. Managing such change requires better understanding of the geo–ecological processes involved and the factors that determine landscape sensitivity. This is illustrated through a simple framework and examples from the three areas. Comparison of landscape sensitivity between similar montane areas, but in different geographic locations and climatic environments, should allow more informed management planning and a precautionary approach in advance of further changes in human activity and from predicted global warming scenarios.  相似文献   
420.
The western border of South America is one of the most important seismogenic regions in the world. In this region the most damaging earthquake ever recorded occurred. In June 23rd, 2001, another very strong earthquake (Mw = 8.1–8.2) occurred and produced death and damages in the whole southern region of Peru. This earthquake was originated by a friction process between Nazca and South American plates and affected an area of about 300 km × 120 km defined by the distribution of more than 220 aftershocks recorded by a local seismic network that operated 20 days. The epicenter of the main shock was localized in the northwestern extremity of the aftershock area, which suggests that the rupture propagated towards the SE direction. The modeling of P-wave for teleseismic distances permitted to define a focal mechanism of reverse type with NW-SE oriented nodal planes and a possible fault plane moving beneath almost horizontally in NE direction. The source time function (STF) suggests a complex process of rupture during 85 sec with 2 successive sources. The second one of greater size, and located approximately 100–120 km toward the SE direction was estimated to have a rupture velocity of about 2 km/sec on a 28°-dipping plane to the SE (N135°). A second event happened 45 sec after the first one with an epicenter 130km farther to the SE and a complex STF. This event and the second source of the main shock caused a Tsunami with waves from 7 to 8 meters that propagated almost orthogonally to the coast line, by affecting mainly the Camaná area.Three of all the aftershocks presented magnitudes greater or equal to Mw = 6.6, two of them occurred in front of the cities of Ilo and Mollendo (June 26th and July 7th) with focal mechanisms similar to the main seismic event. The aftershock of July 5th shows a normal mechanism at a depth of 75 km, and is therefore most likely located within the subducting Nazca plate and not in the coupling. The aftershocks of June 26th (Mw = 6.6) and July 5th (Mw = 6.6) show simple short duration STF. The aftershock of July 7th (Mw = 7.5) with 27-second duration suggests a complex process of energy release with the possible occurrence of a secondary shock with lower focal depth and focal mechanism of inverse type with a great lateral component. Simple and composed focal mechanisms were elaborated for the aftershocks and all have similar characteristics to the main earthquake.The earthquake of June 23rd caused major damages in the whole southern Peru. The damage in towns of Arequipa, Moquegua allow to consider maximum intensities from 6 to 7 (MSK79). In Alto de la Alianza and Ciudad Nueva zones from Tacna, the maximum intensity was of 7 (MSK79).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号