首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   398篇
  免费   13篇
  国内免费   18篇
测绘学   6篇
大气科学   40篇
地球物理   117篇
地质学   153篇
海洋学   42篇
天文学   48篇
综合类   4篇
自然地理   19篇
  2022年   5篇
  2021年   11篇
  2020年   10篇
  2019年   8篇
  2018年   18篇
  2017年   12篇
  2016年   24篇
  2015年   11篇
  2014年   20篇
  2013年   22篇
  2012年   20篇
  2011年   19篇
  2010年   23篇
  2009年   25篇
  2008年   21篇
  2007年   23篇
  2006年   13篇
  2005年   17篇
  2004年   18篇
  2003年   12篇
  2002年   19篇
  2001年   12篇
  2000年   9篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   6篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1973年   2篇
  1964年   1篇
  1957年   1篇
排序方式: 共有429条查询结果,搜索用时 15 毫秒
351.
Time series of hydrographic sections in the northern North Atlantic from the period 1990 to 2004 are analyzed for changes in the characteristics and distribution of water masses that are involved in the thermohaline circulation (THC). During the 1990s, the North Atlantic Oscillation (NAO) alternates from a positive phase (strong westerlies) to a negative phase (weak westerlies). The reduced ocean heat loss confined the convection in the Labrador Sea to the upper 1,200 m, generating a new salinity minimum layer characterizing the Upper Labrador Sea Water (ULSW), and led to a warming and salinization of the older LSW below due to lateral mixing. The Lower LSW, formed in the first half of the 1990s, spread in the subpolar gyre and reached the Newfoundland and Irminger basins after about 1 to 2 years, where the associated isopycnal doming contributed to eastward frontal shifts in the upper layer. After 5 and 6 years, it arrived in the Iceland and West European basins, respectively. The collapse of the isopycnal dome in the Labrador Sea, associated with the drainage of the Lower LSW, resulted in a slowing of the cyclonic circulation of the subpolar gyre. This was accompanied in the upper layer by a westward shift of the southeastern extension of the gyre and a northward advection of warm and saline subtropical water in its eastern part, which finally reached the Labrador Sea after about 7 years. In the upper layer of the Labrador Sea, the advection of warm and saline water dominated over the heat loss to the atmosphere and the freshwater gain from melting ice and precipitation in the NAO-low period, so that no accumulation of freshwater but an increase of the heat and salt contents were observed, as in the whole eastern part of the subpolar gyre. Within 1 to 2 years after the drop of the NAO in the winter of 1995/1996, the Subarctic (Subpolar) Front shifted northward and westward north of about 50°N, favored by the retreat of the low-salinity tongue extending eastward from the southern Labrador Sea, and it shifted southward and eastward in the Newfoundland Basin. Therefore, the enhanced northward advection of subtropical waters in the northeastern North Atlantic is balanced by the enhanced southward advection of subarctic waters, including Lower LSW in the Newfoundland Basin, indicating a strong response of the gyre component of the THC.  相似文献   
352.
The Larderello geothermal field is generally accepted to have been produced by a granite intrusion at 4–9 km depth. Hydrothermal parageneses and fluid inclusions always formed at temperatures greater than or equal to the current ones, which implies that the field has always undergone a roughly monotonic cooling history (fluctuations < 40 K) since intrusion of the granite at 4 Ma. The heat required to maintain the thermal anomaly over such a long period is supplied by a seismically anomalous body of 32000 km3 rooted in the mantle. Borehole minerals from Larderello are thus a unique well-calibrated natural example of thermally induced Ar and Sr loss under geological conditions and time spans. The observations (biotites retain Ar above 450°C) agree well with other, albeit less precise, geological determinations, but contrast with laboratory determinations of diffusivity from the literature. We therefore performed a hydrothermal experiment on two Larderello biotites and derived a diffusivity D Lab(370°C)=5.3·10-18 cm2s-1, in agreement with published estimates of diffusivity in annite. From D Lab and the rejuvenation of the K/Ar ages we calculate maximum survival times at the present in-hole temperatures. They trend smoothly over almost two orders of magnitude from 352 ka to 5.3 ka, anticorrelating with depth: laboratory diffusivities are inconsistent not only with geological facts, but also among themselves. From the geologically constrained lifetime of the thermal anomaly we derive a diffusivity D G(370°C)=3.81·1021 cm2s-1, 3±1 orders of magnitude lower than D Lab. The cause of these discrepancies must be sought among various laboratory artefacts: overstepping of a critical temperature T *; enhanced diffusivities in wet experiments; presence of fast pathway (dislocation and pipe) diffusion, and of dissolution/reprecipitation reactions, which we imaged by scanning electron microscopy. These phenomena are minor in geological settings: in the absence of mineral transformation reactions, complete or near-complete resetting is achieved only by volume diffusion. Therefore, laboratory determinations will necessarily result in apparent diffusivities that are too high compared to those actually effecting the resetting of natural geochronometers.This word is dedicated to the memory of Aldo Valori (1958–1991)  相似文献   
353.
<正>In the last decade there has been a considerable effort to better understand the joint evolution of mafic and ultramafic magmatic systems and their deep mantle roots,through integrated petrological and thermo-barometric studies.Magma generation is regarded as the result of complex processes including melting,creation of channels for melt transfer,and interaction with the wall-rocks.Complexities in magmatic systems involve metasomatism and the creation of metasomatic fronts,branching and splitting of magma volumes during their evolution,and vat-  相似文献   
354.
This paper is the second in a sequel of two papers and dedicated to the computation of paraxial rays and dynamic characteristics along the stationary rays obtained in the first paper. We start by formulating the linear, second‐order, Jacobi dynamic ray tracing equation. We then apply a similar finite‐element solver, as used for the kinematic ray tracing, to compute the dynamic characteristics between the source and any point along the ray. The dynamic characteristics in our study include the relative geometric spreading and the phase correction due to caustics (i.e. the amplitude and the phase of the asymptotic form of the Green's function for waves propagating in 3D heterogeneous general anisotropic elastic media). The basic solution of the Jacobi equation is a shift vector of a paraxial ray in the plane normal to the ray direction at each point along the central ray. A general paraxial ray is defined by a linear combination of up to four basic vector solutions, each corresponds to specific initial conditions related to the ray coordinates at the source. We define the four basic solutions with two pairs of initial condition sets: point–source and plane‐wave. For the proposed point–source ray coordinates and initial conditions, we derive the ray Jacobian and relate it to the relative geometric spreading for general anisotropy. Finally, we introduce a new dynamic parameter, similar to the endpoint complexity factor, presented in the first paper, used to define the measure of complexity of the propagated wave/ray phenomena. The new weighted propagation complexity accounts for the normalized relative geometric spreading not only at the receiver point, but along the whole stationary ray path. We propose a criterion based on this parameter as a qualifying factor associated with the given ray solution. To demonstrate the implementation of the proposed method, we use several isotropic and anisotropic benchmark models. For all the examples, we first compute the stationary ray paths, and then compute the geometric spreading and analyse these trajectories for possible caustics. Our primary aim is to emphasize the advantages, transparency and simplicity of the proposed approach.  相似文献   
355.
356.
Tectonic reconstructions and quantitative models of landscape evolution are increasingly based on detailed analysis of detrital systems. Since the definition of closure temperature in the 1960s, mineral ages of low-temperature geochronometers are traditionally interpreted as the result of cooling induced by erosion, whose rate is a simple, unique function of age patterns. Such an approach can lead to infer paradoxically high erosion rates that conflict with compelling geological evidence from sediment thickness in basins. This indicates that tectonic and landscape models that solely interpret mineral ages as due to cooling during exhumation may not be valid.Here we propose a new approach that takes into account the effects of both crystallization and exhumational cooling on geochronometers, from U–Pb on zircon to fission tracks on apatite. We first model the mechanical erosion of an unroofing magmatic complex and the resulting accumulation and burial of the eroded units in reverse order in the basin. Detrital mineral ages follow a regular pattern downsection. Some mineral ages, such as e.g. U–Pb ages of zircons, cluster around the “magmatic age”, i.e. the crystallization of the magma. Its value is constant along the stratigraphic column in the sedimentary basin; we refer to this behavior as “stationary age peak”. Some other mineral ages, such as e.g. apatite fission-track ages, are often younger than the magmatic age. When they vary smoothly with depth, they define a “moving age peak”, which is the only possible effect of undisturbed cooling during overburden removal, and can therefore be used to calculate an erosion rate.The predictions of our model were tested in detail on the extremely well-studied Bregaglia (Bergell) orogenic pluton in the Alps, and on the sedimentary succession derived from its erosion, the Gonfolite Group. The consistency between predicted and observed age patterns validates the model. Our results resolve a long-standing paradox in quantitative modelling of erosion–sedimentation, namely the scarcity of sediment during apparently fast erosion. Starved basins are the observational baseline, and modelling must be tuned to include a correct analysis of detrital mineral geochronology in order to reconcile perceived discrepancies between stratigraphical and geochronological information. In addition, our data demonstrate that volcanoes were active on top of the growing Oligocene Alps.This study illustrates rigorous criteria for detrital mineral geochronology that are applicable to any geological setting, including magmatic arcs and collision orogens, and provides fundamental interpretive keys to solve complex puzzles and apparent paradoxes in geological reconstructions.  相似文献   
357.
The structure of the outer part of the Galaxy is studied, based upon 21-cm line observations of Hi in the region 288°l310°, –7°b2°.In this longitude range the galactic plane is strongly bend toward negative latitudes.The principal outer structure is a spiral arm which has a pitch angle of 10° and is formed by several concentrations differing in shape and size. There exists also a secondary concentration which could be a split from the previous structure.Possible hypotheses about the origin of the later feature are discussed.  相似文献   
358.
We present results of a high resolution study of the filamentary infrared dark cloud G192.76+00.10 in the S254-S258 OB complex in several molecular species tracing different physical conditions. These include three isotopologues of carbon monoxide(CO), ammonia(NH3) and carbon monosulfide(CS). The aim of this work is to study the general structure and kinematics of the filamentary cloud, and its fragmentation and physical parameters. The gas temperature is derived from the NH3(J, K) =(1,1),(2, 2) and ~(12)CO(2-1) lines, and the ~(13)CO(1-0), ~(13)CO(2-1) emission is used to investigate the overall gas distribution and kinematics. Several dense clumps are identified from the CS(2-1)data. Values of the gas temperature lie in the range 10-35 K, and column density N(H2) reaches the value 5.1 x 10~(22) cm~(-2). The width of the filament is of order 1 pc. The masses of the dense clumps range from ~ 30 M_☉ to ~ 160 M_☉. They appear to be gravitationally unstable. The molecular emission shows a gas dynamical coherence along the filament. The velocity pattern may indicate longitudinal collapse.  相似文献   
359.
A general definition of seismic wave impedance is proposed as a matrix differential operator transforming the displacement boundary conditions into traction ones. This impedance is proportional to the standard acoustic impedance at all incidence angles and allows extensions to attenuative media and to the full elastic case. In all cases, reflection amplitudes at the contact of two media are uniquely described by the ratios of their impedances. Here, the anelastic acoustic impedance is studied in detail and attenuation contrasts are shown to produce phase‐shifted reflections. Notably, the correspondence principle (i.e., the approach based on complex‐valued elastic modules in the frequency domain) leads to incorrect phase shifts of the impedance due to attenuation and consequently to wrong waveforms reflected from attenuation contrasts. Boundary conditions and the Lagrange formulation of elastodynamics suggest that elastic constants should remain real in the presence of attenuation and the various types of energy dissipation should be described by their specific mechanisms. The correspondence principle and complex‐valued elastic moduli appear to be applicable only to homogeneous media and therefore they should be used with caution when applied to heterogeneous cases.  相似文献   
360.
Summary MHD vortex flow near the heliomagnetic equatorial plane in the outer heliosphere is studied. The possibility of spiral vortex tubes existing on both sides of the equatorial plane is shown. A structure of this type with the scale of the order of several astronomical units can be formed during the solar minimum when the solar wind velocity has a distinct latitudinal dependence with a minimum near the equatorial plane. Another cause of this vortex structure can be the presence of inhomogeneities of the solar wind in the inner heliosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号