首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4385篇
  免费   225篇
  国内免费   234篇
测绘学   161篇
大气科学   328篇
地球物理   1575篇
地质学   1450篇
海洋学   369篇
天文学   598篇
综合类   99篇
自然地理   264篇
  2023年   36篇
  2022年   85篇
  2021年   114篇
  2020年   117篇
  2019年   92篇
  2018年   166篇
  2017年   156篇
  2016年   210篇
  2015年   160篇
  2014年   199篇
  2013年   213篇
  2012年   177篇
  2011年   197篇
  2010年   225篇
  2009年   176篇
  2008年   168篇
  2007年   138篇
  2006年   141篇
  2005年   86篇
  2004年   121篇
  2003年   92篇
  2002年   133篇
  2001年   86篇
  2000年   85篇
  1999年   66篇
  1998年   74篇
  1997年   49篇
  1996年   64篇
  1995年   48篇
  1994年   60篇
  1993年   49篇
  1992年   53篇
  1991年   35篇
  1990年   40篇
  1989年   39篇
  1988年   45篇
  1987年   53篇
  1986年   41篇
  1985年   28篇
  1984年   38篇
  1983年   41篇
  1982年   64篇
  1981年   37篇
  1980年   39篇
  1979年   45篇
  1978年   37篇
  1977年   28篇
  1976年   27篇
  1973年   33篇
  1972年   29篇
排序方式: 共有4844条查询结果,搜索用时 15 毫秒
81.
In the 20th century on the territory of the northern slope of the Greater Caucasus the number of glaciers increased by 245 (or by 19%) and the glaciation area decreased by 849 km2 (or by 52.6%). It is revealed that the increase in the number of glaciers occurred as a result of the disintegration of larger glaciers into smaller parts and as a result of the cutoff of their tributaries, and the decrease in the glaciation area, due to the negative balance of the mass of glaciers. The length of all glaciers decreased by 128–3520 m during that period. It is demonstrated that in 1970–2011 the decrease in the glaciation area occurred with the rate being smaller than in 1895–1970 by 1.6 times that is associated with more favorable climatic conditions in 1970–2011. According to the computations of the climate model by the Main Geophysical Observatory (moderate scenario) for 2011–2099, average annual air temperature will increase by 1.06–2.70°C and the annual amount of precipitation, by 2.09–2.77%. According to the results of computations, the glaciation area in 2011–2099 will reduce by 585 km2 or by 76.5%. In the region under consideration, glaciation with the area of 180 km2 which will be concentrated only in the central part of the Greater Caucasus will maintain by 2099. The glacier runoff will decrease by 74–80%.  相似文献   
82.
A simulation of the 1991 summer has been performed over south Greenland with a coupled atmosphere–snow regional climate model (RCM) forced by the ECMWF re-analysis. The simulation is evaluated with in-situ coastal and ice-sheet atmospheric and glaciological observations. Modelled air temperature, specific humidity, wind speed and radiative fluxes are in good agreement with the available observations, although uncertainties in the radiative transfer scheme need further investigation to improve the model’s performance. In the sub-surface snow-ice model, surface albedo is calculated from the simulated snow grain shape and size, snow depth, meltwater accumulation, cloudiness and ice albedo. The use of snow metamorphism processes allows a realistic modelling of the temporal variations in the surface albedo during both melting periods and accumulation events. Concerning the surface albedo, the main finding is that an accurate albedo simulation during the melting season strongly depends on a proper initialization of the surface conditions which mainly result from winter accumulation processes. Furthermore, in a sensitivity experiment with a constant 0.8 albedo over the whole ice sheet, the average amount of melt decreased by more than 60%, which highlights the importance of a correctly simulated surface albedo. The use of this coupled atmosphere–snow RCM offers new perspectives in the study of the Greenland surface mass balance due to the represented feedback between the surface climate and the surface albedo, which is the most sensitive parameter in energy-balance-based ablation calculations.  相似文献   
83.
Several numerical experiments are conducted to examine the influence of mesoscale, bottom topography roughness on the inertial circulation of a wind-driven, mid-latitude ocean gyre. The ocean model is based on the quasi-geostrophic formulation, and is eddy-resolving as it features high vertical and horizontal resolutions (six layers and a 10 km grid). An antisymmetrical double-gyre wind stress curl forces the baroclinic modes and generates a strong surface jet. In the case of a flat bottom, inertia and inverse energy cascade force the barotropic mode, and the resulting circulation features strong, barotropic, inertial gyres. The sea-floor roughness inhibits the inertial circulation in the deep layers; the barotropic component of the flow is then forced by eddy-topography interactions, and its energy concentrates at the scales of the topography. As a result, the baroclinicity of the flow is intesified: the barotropic mode is reduced with regard to the baroclinic modes, and the bottom flow (constrained by the mesoscale sea-floor roughness) is decoupled from the surface flow (forced by the gyre-scale wind). Rectified, mesoscale bottom circulation induces an interfacial form stress at the thermocline, which enhances horizontal shear instability and opposes the eastward penetration of the jet. The mean jet is consequently shortened, but the instantaneous jet remains very turbulent, with meanders of large meridional extent. The sea-floor roughness modifies the energy pathways, and the eddies have an even more important role in the establishment of the mean circulation: below the thermocline, rectification processes are dominant, and eddies transfer energy toward permanent mesoscale circulations strongly correlated with topography, whereas above the thermocline mean flow and eddy generation are influenced by the mean bottom circulation through interfacial stress. The topography modifies the vorticity of the barotropic and highest baroclinic modes. Vorticity accumulates at the small topographic scales, and the vorticity content of the highest modes, which is very weak in the flat-bottom case, increases significantly. Few changes occur in surface-intensified modes. In the deep layers of the model, the inverse correlation between relative vorticity and topography at small scales ensures the homogenization of the potential vorticity, which mainly retains the largest scales of the bottom flow and the scale of β.  相似文献   
84.
Digital elevation models (DEMs) are commonly constructed using two main types of regular grids: plane square grids and spheroidal equal angular grids. Methods and algorithms intended for plane square‐gridded DEMs should not be directly applied to spheroidal equal angular DEMs. This is because these grids have fundamentally different geometry. However, some researchers continue to apply square‐grid algorithms to spheroidal equal angular DEMs. It seems appropriate to consider once again the specifity of morphometric treatment of spheroidal equal angular DEMs. This article, first, demonstrates possibilities of direct calculation of local, nonlocal, and combined morphometric variables from spheroidal equal angular DEMs exemplified by slope gradient, catchment area, and topographic index. Second, the article shows computational errors when algorithms for plane square‐gridded DEMs are unreasonably applied to spheroidal equal angular DEMs. The study is exemplified by two DEMs. A medium‐resolution DEM of a relatively small, high‐mountainous area (Mount Elbrus) was extracted from the SRTM1 DEM. A low‐resolution DEM of a vast region with the diverse topography (the central and western regions of Kenya) was extracted from the SRTM30_PLUS DEM. The results show that application of square‐grid methods to spheroidal equal angular DEMs leads to substantial computational errors in models of morphometric variables.  相似文献   
85.
CNS+GNSS+INS船载高精度实时定位定姿算法改进研究   总被引:1,自引:1,他引:1  
天文导航(CNS)、卫星导航(GNSS)和惯性导航(INS) 3种系统组合可提供高精度的定位定姿结果。实际工程中因INS长时间误差累积,以及系统硬件传输存在不可忽略的时间延迟,导致INS提供给CNS的预报粗姿态误差较大,恶劣海况下难以保障快速搜星,造成天文导航可靠性下降、姿态测量精度较低的问题。为此,本文提出了一种CNS+GNSS+INS高精度信息融合实时定位定姿框架,引入了等角速度外推措施,有效地解决了惯导信息延迟问题。通过高精度转台模拟恶劣海况下载体大角速度摇摆,验证了本文提出的改进算法的有效性。试验结果表明,该算法架构简单,性能可靠,显著提高了恶劣环境下星敏感器的快速、准确搜星能力,保障了三组合姿态测量的精度和可用性。  相似文献   
86.
豫北“21·7”极端暴雨过程特征及成因分析   总被引:1,自引:0,他引:1  
苏爱芳  席乐  吕晓娜  崔丽曼  张宁 《气象》2022,48(5):556-570
利用探空、地面自动站、多普勒雷达等观测资料及ERA5再分析产品,对2021年7月17—22日豫北地区的极端暴雨过程进行分析。结果表明,极端暴雨过程具有强降水持续时间长、降水强度极端及地形影响明显等特征。极端暴雨过程发生于稳定的大尺度天气形势下,在日本海高压西伸及台风烟花(2106号)、查帕卡(2107号)西北行背景下,黄淮低涡外围加强北上的东南急流/偏南急流为强降水的发生提供了异常充足的水汽、能量条件,对流层中低层暖湿平流强迫、叠加地形影响的强动力辐合抬升作用及低空弱冷空气扩散南下是形成强降水的重要条件,而大气“强-弱-强-弱”的对流不稳定层结特征转化说明强降水过程中存在着两种互补的物理机制。不同阶段极端短时强降水(小时降水量≥50 mm)对流系统的形态结构和发展演变特征不同,但从雷达回波的垂直分布来看,系统均具有“低质心”特征,质心强度≥55 dBz且≥50 dBz强回波垂直伸展至5~8 km、持续时间1 h以上。强降水对流系统在太行山前30 km左右范围内的后向发展特征明显,一方面与地面西行偏东风/东北风在太行山绕流作用下形成的地形辐合线不断南伸有关,另一方面也与强降水冷池效应促使...  相似文献   
87.
The ability of an atmospheric general circulation model to reproduce fundamental features of the wintertime extratropical Southern Hemisphere (SH) circulation is evaluated with emphasis on the daily variability of the SH mean flow and the mean flow-transient perturbations interaction. Two 10-year simulations using a new version of the LMDZ GCM with a stretched grid scheme centered at 45 °S and forced by climatological SST are performed: a high (144Ꮡ) and low (64Ꭹ) horizontal resolution runs. The performance of both simulations was determined by comparing several simulated fields (zonal wind, temperature, kinetic energy, transient eddy momentum and heat fluxes, Eliassen-Palm fluxes, Eady growth rate and baroclinic conversion term) against the European Centre for Medium Range Weather Forecast reanalyses (ERA). High and low-resolution simulations are similar in many respects; in particular, both experiments reproduce the main patterns of the southern extratropical large-scale circulation satisfactorily. Increasing resolution does not improve universally some spurious aspects of the low resolution simulation (e.g. the cold bias in the high polar troposphere, the debilitated subtropical jet, the low baroclinic conversion rate). Those aspects present little sensitivity to the model resolution. The interaction between transient eddies and zonal mean flow are examined. The low-resolution experiment is able to qualitatively represent the acceleration/deceleration of the mean flow by transient perturbations, south/north of 30 °S with an accuracy similar to that of the high-resolution experiment. Although both experiments represent the baroclinic structure of the mean flow satisfactorily, the model underestimates some transient properties due to the underestimation of the baroclinic conversion term in middle latitudes. Such misrepresentation does not improve with increasing resolution and is related to the relatively weak meridional temperature gradient and the inadequate geographical distribution of the eddy heat fluxes. In particular, the eddy kinetic energy is always underestimated. Eddy kinetic energy does not improve convincingly with increasing resolution, suggesting that the adequate representation of the storm tracks is highly influenced by the physical parametrizations.  相似文献   
88.
The ability of four regional climate models to reproduce the present-day South American climate is examined with emphasis on La Plata Basin. Models were integrated for the period 1991–2000 with initial and lateral boundary conditions from ERA-40 Reanalysis. The ensemble sea level pressure, maximum and minimum temperatures and precipitation are evaluated in terms of seasonal means and extreme indices based on a percentile approach. Dispersion among the individual models and uncertainties when comparing the ensemble mean with different climatologies are also discussed. The ensemble mean is warmer than the observations in South Eastern South America (SESA), especially for minimum winter temperatures with errors increasing in magnitude towards the tails of the distributions. The ensemble mean reproduces the broad spatial pattern of precipitation, but overestimates the convective precipitation in the tropics and the orographic precipitation along the Andes and over the Brazilian Highlands, and underestimates the precipitation near the monsoon core region. The models overestimate the number of wet days and underestimate the daily intensity of rainfall for both seasons suggesting a premature triggering of convection. The skill of models to simulate the intensity of convective precipitation in summer in SESA and the variability associated with heavy precipitation events (the upper quartile daily precipitation) is far from satisfactory. Owing to the sparseness of the observing network, ensemble and observations uncertainties in seasonal means are comparable for some regions and seasons.  相似文献   
89.
本文介绍了地震行业地面骨干网与应急卫星通信网的运行现状及互联存在的路由问题,讨论了实现两网互联的路由设计目标和策略,根据OSPF协议与BGP协议的特点和适用范围,提出了统一互联的接入方法,以及联合使用OSPF和BGP协议解决两网互联路由问题的具体方案,经网络仿真平台测试证明,该方案切实可行,效果良好。  相似文献   
90.
This work examines the relevance of the inclusion of ground-based gravity data in the calibration process of a global rainfall-discharge reservoir model. The analysis is performed for the Durzon karst system (Larzac, France). The first part of the study focuses on the hydrological interpretation of the ground-based gravity measurements. The second part of the study investigates further the information content of the gravity data with respect to water storage dynamics modelling. The gravity-derived information is found unable to either reduce equifinality of the single-objective, discharge-based model calibration process or enhance model performance through assimilation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号