首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2134篇
  免费   69篇
  国内免费   16篇
测绘学   39篇
大气科学   172篇
地球物理   421篇
地质学   818篇
海洋学   146篇
天文学   405篇
综合类   7篇
自然地理   211篇
  2023年   10篇
  2022年   10篇
  2021年   24篇
  2020年   28篇
  2019年   23篇
  2018年   44篇
  2017年   30篇
  2016年   57篇
  2015年   45篇
  2014年   49篇
  2013年   119篇
  2012年   65篇
  2011年   102篇
  2010年   87篇
  2009年   111篇
  2008年   104篇
  2007年   77篇
  2006年   92篇
  2005年   80篇
  2004年   87篇
  2003年   85篇
  2002年   89篇
  2001年   53篇
  2000年   49篇
  1999年   55篇
  1998年   57篇
  1997年   28篇
  1996年   25篇
  1995年   26篇
  1994年   32篇
  1993年   34篇
  1992年   25篇
  1991年   22篇
  1990年   29篇
  1989年   41篇
  1988年   20篇
  1987年   19篇
  1986年   31篇
  1985年   28篇
  1984年   34篇
  1983年   23篇
  1982年   19篇
  1981年   27篇
  1980年   23篇
  1979年   20篇
  1977年   12篇
  1976年   11篇
  1975年   7篇
  1974年   13篇
  1970年   7篇
排序方式: 共有2219条查询结果,搜索用时 31 毫秒
71.
The sequence architecture and depositional systems of the Paleogene lacustrine rift succession in the Huanghekou Sag, Bohai Bay Basin, NE China were investigated based on seismic profiles, combined with well log and core data. Four second‐order or composite sequences and seven third‐order sequences were identified. The depositional systems identified in the basin include: fan delta, braid delta, meander fluvial delta, lacustrine and sublacustrine fan. Identification of the slope break was conducted combining the interpretation of faults of each sequence and the identification of syndepositional faults, based on the subdivision of sequence stratigraphy and analysis of depositional systems. Multiple geomorphologic units were recognized in the Paleogene of the Huanghekou Sag including faults, flexures, depositional slope break belts, ditch‐valleys and sub‐uplifts in the central sag. Using genetic division principles and taking into consideration tectonic features of the Paleogene of the Huanghekou Sag, the study area was divided into the Northern Steep Slope/Fault Slope Break System, the Southern Gentle Slope Break System and T10 Tectonic Slope Break System/T10 Tectonic Belt. Responses of slope break systems to deposition–erosion are shown as: (1) basin marginal slope break is the boundary of the eroded area and provenance area; (2) ditch‐valley formed by different kinds of slope break belts is a good transport bypass for source materials; (3) shape of the slope break belt of the slope break system controls sediments types; (4) the ditch‐valley and sub‐sag of a slope break system is an unloading area for sediments; and (5) due to their different origins, association characteristics and developing patterns, the Paleogene slope break belt systems in the Huanghekou Sag show different controls on depositional systems. The Northern Fault Slope Break system controls the deposition of a fan delta‐lacustrine‐subaqueous fan, the Southern Gentle Slope Break system controls the deposition of a fluvial–deltaic–shallow lacustrine and sublacustrine fan, and the T10 Tectonic Slope Break System controls the deposition of shallow lacustrine beach bar sandbodies. The existence of a slope break system is a necessary but not a sufficient condition for studying sandbody development. The formation of effective sandbodies along the slope break depends on the reasonable coupling of effective provenance, necessary association patterns of slope break belt, adequate unloading space and creation of definite accommodation space. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
72.
Over the past thirty years, geoarchaeology has moved from the fringe to mainstream status within Mesoamerican archaeological investigations. This review focuses on works published since the year 2000. Five themes are identified as central to recent studies: (1) the correlation of environmental change and cultural history; (2) anthropogenic environmental impacts; (3) ancient land cover, land use, and diet; (4) archaeological prospection; and (5) provenance studies. These themes are often interwoven in the application of complex systems approaches that allow scientists to more accurately model the intricacies of ancient human–environment interactions.  相似文献   
73.
Soil erosion threatens long-term soil fertility and food production in Q’eqchi’ communities native to the Sierra Yalijux and Sierra Sacranix mountain ranges in the central highlands of Guatemala. Environmental factors such as steep topography, erodible soils, and intense precipitation events, combined with land subdivision and reduced fallow periods as a consequence of population growth, contribute to severe erosion and strain soil resources. The preservation of the region's cloud forests hinges on enhancing production of staple crops through agricultural intensification while maintaining soil fertility through implementation of soil conservation measures.  相似文献   
74.
Whilst much attention has been given to models that describe wave, tide and sediment transport processes in sufficient detail to determine the local changes in bed level over a relatively detailed representation of the bathymetry, far less attention has been given to models that consider the problem at a much larger scale (e.g. that of geomorphological elements such as a tidal flat and tidal channel). Such aggregated or lumped models tend not to represent the processes in detail but rather capture the behaviour at the scale of interest. One such model developed using the concept of an equilibrium concentration is the Aggregated Scale Morphological Interaction between Tidal basin and Adjacent coast (ASMITA). In this paper we provide some new insights into the concepts of equilibrium, and horizontal and vertical exchange that are key components of this modelling approach. In a companion paper, we summarise a range of developments that have been undertaken to extend the original model concept, to illustrate the flexibility and power of the conceptual framework. However, adding detail progressively moves the model in the direction of the more detailed process-based models and we give some consideration to the boundary between the two.  相似文献   
75.
76.
Shale gas is considered by many to have the potential to provide the UK with greater energy security, economic growth and jobs. However, development of a shale gas industry is highly contentious due to environmental concerns including the risk of groundwater pollution. Evidence suggests that the vertical separation between exploited shale units and aquifers is an important factor in the risk to groundwater from shale gas exploitation. A methodology is presented to assess the vertical separation between different pairs of aquifers and shales that are present across England and Wales. The application of the method is then demonstrated for two of these pairs—the Cretaceous Chalk Group aquifer and the Upper Jurassic Kimmeridge Clay Formation, and the Triassic sandstone aquifer and the Carboniferous Bowland Shale Formation. Challenges in defining what might be considered criteria for ‘safe separation’ between a shale gas formation and an overlying aquifer are discussed, in particular with respect to uncertainties in geological properties, aquifer extents and determination of socially acceptable risk levels. Modelled vertical separations suggest that the risk of aquifer contamination from shale exploration will vary greatly between shale–aquifer pairs and between regions and this will need to be considered carefully as part of the risk assessment and management for any shale gas development.  相似文献   
77.
Solid matrix 3H reference materials are challenging to prepare given the volatile nature of 3H and are often unrepresentative of the range of 3H forms that may be encountered during routine analysis. As a result, few 3H reference materials are currently available, undermining verification of analytical techniques for environmental 3H measurement. To address this, an International Working Group on Organically‐Bound Tritium Analysis determined to produce a tritium natural matrix reference material (NMRM). The reference material comprises marine sediment blended with sewage sludge contaminated with 3H‐organic species arising from authorised discharges from a radiopharmaceutical manufacturing site. Previous studies have demonstrated that the 3H species have persisted in the environment over three decades providing valuable supporting data to underpin the characterisation of the NMRM. The preparation and characterisation of the NMRM are described along with the subsequent application of the reference material in an international intercomparison exercise involving nineteen laboratories from nine countries. A reference value of 168 ± 22 Bq kg?1 was derived from the data arising from the proficiency test.  相似文献   
78.
Quenched juvenile mafic inclusions (enclaves) are an occasional but informative component in the deposits of large felsic eruptions. Typically, the groundmasses of these inclusions rapidly crystallize as the mafic magma is chilled against a more voluminous, cooler felsic host, providing a physical and chemical record of the nature and timing of mafic–felsic interactions. We examine mafic inclusions of two compositional lineages (tholeiitic and calc-alkaline) from deposits of the 25.4 ka Oruanui eruption (Taupo, New Zealand). 2-D quantitative textural data from analysis of back-scattered electron images reveal a marked diversity in the groundmass textures of the inclusions, including median crystal sizes (amphibole: 14–45 µm; plagioclase: 21–75 µm) and aspect ratios (amphibole: 1.7–4.2; plagioclase: 2.1–4.0), area number densities (amphibole: 122–2660 mm?2; plagioclase: 117–2990 mm?2), area fractions (?) of minerals (?plag?=?23–45%, ?amph?=?0–28%, ?cpx?=?0–6%, ?oxides?=?0.6–5.5%), and the relative abundance of plagioclase and amphibole (?plag/?amph?=?1.0–4.6). Textural parameters vary more significantly within, rather than between, the two compositional lineages, and in some cases show marked variations across individual clasts, implying that each inclusion’s cooling history, rather than bulk composition, was the dominant control on textural development. Groundmass mineral compositions are also diverse both within and between inclusions (e.g. plagioclase from An34–92, with typical intra-clast variability of ~?20 mol%), and do not correlate with bulk chemistry. Diverse groundmass textures and mineral and glass chemistries are inferred to reflect complex interplay of a range of factors including the degree and rate of undercooling, bulk composition, water content and, possibly, intensive variables. Our data are inconsistent with breakup of a crystallizing ponded mafic layer at the base of the Oruanui melt-dominant body, instead implying that each inclusion partially crystallized as a discrete body with a unique cooling history. Extensive ingestion of mush-derived macro-crystals suggests that mechanical breakup of mafic feeder dikes occurred within a transition zone between the mush and melt-dominant magma body. In this zone, the mush lacked yield strength, as has been inferred from field studies of narrow (meters to few tens of meters) mush-melt transition zones preserved in composite intrusions. Evidence for plastic deformation of inclusions during eruption and the abundance of fresh residual glass in inclusions from all eruptive phases suggest that the inclusions formed syn-eruptively, and must have been formed recurrently at multiple stages throughout the eruption.  相似文献   
79.
During the Neogene and Quaternary, tectonic and climatic processes have had a profound impact upon landscape evolution in England and, perhaps as far back as 0.9 Ma, patterns of early human occupation. Until the Late Miocene, large-scale plate tectonic processes were the principal drivers of landscape evolution causing localised basin inversion and widespread exhumation. This drove, in places, the erosion of several kilometres of Mesozoic cover rocks and the development of a regional unconformity across England and the North Sea Basin. By the Pliocene, the relative influence of tectonics on landscape evolution waned as the background tectonic stress regime evolved and climatic influences became more prominent. Global-scale climate-forcing increased step-wise during the Plio-Pleistocene amplifying erosional and depositional processes that operated within the landscape. These processes caused differential unloading (uplift) and loading (subsidence) of the crust (‘denudational isostasy’) in areas undergoing net erosion (upland areas and slopes) and deposition (basins). Denudational isostasy amplified during the Mid-Pleistocene Transition (c.0.9 Ma) as landscapes become progressively synchronised to large-scale 100 ka ‘eccentricity’ climate forcing. Over the past 0.5 Ma, this has led to the establishment of a robust climate record of individual glacial/interglacial cycles enabling comparison to other regional and global records. During the Last Glacial-Interglacial Transition and early Holocene (c.16–7 ka), evidence for more abrupt (millennial/centennial) scale climatic events has been discovered. This indicates that superimposed upon the longer-term pattern of landscape evolution is a more dynamic response of the landscape to local and regional drivers.  相似文献   
80.
The Anthropocene deposits of England, here regarded as those formed after ~1950 CE, are now extensive, take various forms, and may be characterized and recognized by a number of stratigraphic signals, such as artificial radionuclides, pesticide residues, microplastics, enhanced fly ash levels, concrete fragments and a novel variety of ‘technofossils’ and neobiotic species. They include the uppermost parts of both ‘natural’ deposits such as the sediment layers formed in lakes and estuaries, and more directly human-made or human-influenced ones such as landfill deposits and the ‘artificial ground’ beneath urban areas and around major constructions. ‘Negative deposits’ include the worked areas of quarries and regions such as the English Fenland, where thick peat deposits have ablated to leave a strongly modified underlying landscape, and extend beneath into the subterranean realm as mine workings, metro systems and boreholes. The production of these is still rapidly increasing and evolving in character, while the early signs of global change, such as warming, sea level rise, and modifications to biotic assemblages, are beginning to further modify the emerging geology of this new phase of Earth history.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号