首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2009篇
  免费   72篇
  国内免费   15篇
测绘学   44篇
大气科学   148篇
地球物理   414篇
地质学   759篇
海洋学   144篇
天文学   356篇
综合类   7篇
自然地理   224篇
  2023年   10篇
  2021年   24篇
  2020年   30篇
  2019年   21篇
  2018年   43篇
  2017年   32篇
  2016年   52篇
  2015年   44篇
  2014年   48篇
  2013年   125篇
  2012年   56篇
  2011年   101篇
  2010年   93篇
  2009年   106篇
  2008年   97篇
  2007年   79篇
  2006年   86篇
  2005年   79篇
  2004年   81篇
  2003年   76篇
  2002年   81篇
  2001年   52篇
  2000年   45篇
  1999年   55篇
  1998年   52篇
  1997年   30篇
  1996年   24篇
  1995年   23篇
  1994年   31篇
  1993年   29篇
  1992年   25篇
  1991年   21篇
  1990年   24篇
  1989年   32篇
  1988年   14篇
  1987年   12篇
  1986年   20篇
  1985年   21篇
  1984年   27篇
  1983年   22篇
  1982年   17篇
  1981年   25篇
  1980年   22篇
  1979年   17篇
  1977年   11篇
  1976年   11篇
  1975年   7篇
  1974年   12篇
  1973年   7篇
  1970年   8篇
排序方式: 共有2096条查询结果,搜索用时 31 毫秒
951.
Ten well‐preserved, earthquake‐triggered liquefaction mounds and a carbonate sand volcano have been found in the Mesoproterozoic Wumishan Formation (1550–1400 Ma) in the Beijing area, North China. These features crop out in a roadcut near Zhuanghuwa Village. All ten mounds occur in the same sedimentary layer and have rounded shapes with some concentric and radial fissures arising from the centre. They range from 1.5 to 4 m in diameter and from 10 cm to 30 cm in height. The carbonate sand volcano has a diameter of 110 cm and the ‘crater’ at the top has a depth of about 30 cm. Associated with these mounds and the sand volcano are many ‘normal’ sedimentary structures and numerous soft‐sediment deformation structures. The former include ripple marks, cross‐bedding, stromatolites and desiccation cracks, indicating deposition in a stable shallow‐water peritidal platform environment. The latter include intrastratal faults and folds, seismically formed breccias and carbonate clastic dykes. The morphological features and the genesis of these liquefaction mounds are very similar to mounds formed recently by the great Wenchuan Earthquake of China (2008). Detailed thin‐section study of the mounds found no signs of any kind of biological constructional process; instead it reveals some obvious fluidification and liquefaction characteristics. Comparative studies have shown that these features are probably the products of Mesoproterozoic earthquake activity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
952.
Geochronological, geochemical and whole-rock Sr–Nd isotopic analyses have been completed on a suite of alkaline ultramafic dykes from southwest (SW) Guizhou Province, China with the aim of characterising their petrogenesis. The Baiceng ultramafic dykes have a LA-ICP-MS zircon 206Pb/238U age of 88.1 ± 1.1 Ma (n = 8), whereas two phlogopites studied by 40Ar/39Ar dating methods give emplacement ages of 85.25 ± 0.57 Ma and 87.51 ± 0.45 Ma for ultramafic dykes from Yinhe and Lurong, respectively. In terms of composition, these Late Mesozoic ultramafic dykes belong to the alkaline magma series due to their high K2O (3.31–5.04 wt.%) contents. The dykes are characterised by enrichment of light rare earth element (LREE) and large-ion lithosphile elements (LILEs) (Rb and Ba), negative anomalies in high field strength elements (HFSEs), such as, Nb, Ta and Ti relative to primitive mantle, low initial 87Sr/86Sr ratios (0.7060–0.7063) and positive εNd(t) values (0.3–0.4). Such features suggest derivation from low degree (< 1%) partial melting of depleted asthenospheric mantle (garnet-lherzolite), and contamination to various degrees (~ 10%) by interaction with upper crustal materials.  相似文献   
953.
The groundwater flow pattern in the northern portion of GAS (Guarani Aquifer System) is characterized by the existence of four regional recharge areas located in São Paulo, Mato Grosso do Sul and Goiás states. From these areas of recharge the regional flow is radial and directed toward the center of the Paraná Sedimentary Basin. Local discharge occurs in portions of outcrop regions. The groundwater has low mineralization and can be classified as Ca or Ca–Mg–HCO3 type, Na–HCO3 type and Na–HCO3/Cl/SO4 type, this sequence represents the hydrochemical evolution. The mechanisms responsible for this evolution are dissolution of feldspars and removal of the carbonate cement from the sandstone mineral framework, followed by ion exchange, responsible for the increase in the Na concentration and decrease of Ca, and, finally, enrichment in Cl and SO4 derived from underlying aquifer units. The hydrochemical evolution is consistent with diagenetic features that are observed in the sandstones, with the presence of siliceous cement in the outcrop areas, and carbonate cement toward the center of Paraná Basin.  相似文献   
954.
δ13C values of dissolved inorganic C (DIC), dissolved organic C (DOC), and particulate organic C (POC) together with δ18O and δ2H values of water, δ34S values of dissolved SO4, and major ion concentrations were measured in the Murray River and its tributaries between November 2005 and April 2007 to constrain the origins and behaviour of riverine C. δ13CDIC values in the Murray River vary between −9.5 and −4.7‰ with a range of <3‰ within any sampling round. δ13CDIC values of the tributaries are −11.0‰ to −5.1‰. DIC concentrations of the Murray River increase from ∼25 mg/L in the middle and upper reaches of the river to 45–55 mg/L in the lower reaches. However, the mass ratio of DIC as a proportion of the total dissolved solids (TDS) decreases from ∼0.6–0.7 in the headwaters to ∼0.2–0.3 in the lower reaches of the river, with similar downstream changes in DIC/Cl ratios. This precludes simple evaporative concentration of DIC and is interpreted as the river evading CO2; this interpretation is consistent with pCO2 values that are in the range 550–11,200 ppm volume (ppmv), which are far higher than those in equilibrium with the atmosphere (∼360 ppmv). The δ13CDIC values are similar to those that would be produced by the weathering of marine limestone (δ13C ∼ 0‰). However, the lack of marine limestones cropping out in the Murray–Darling Basin and the relatively uniform δ13CDIC values of the Murray River (even in upland reaches where the dominant rock types are metamorphosed silicates and granites) make this unlikely. Rather the high pCO2 values and δ13CDIC values are best explained by a combination of mineralisation of low δ13C organic C and evasion to the atmosphere. The rate of these two processes may attain near steady state and control both DIC concentrations and δ13C values.  相似文献   
955.
Garnet-bearing mantle xenoliths have been recovered from Quaternary alkali basalts, both within and peripheral to the Hangay dome of central Mongolia. Microfabric analysis and thermobaromery, combining empirical thermobarometers and the self-consistent dataset of THERMOCALC, indicate that garnet websterites from the Shavaryn-Tsaram volcanic centre at the dome core were formed in the spinel-lherzolite upper mantle at pressures of 17–18 kbars and temperatures of 1,070–1,090°C, whereas garnet lherzolites were derived from greater depths (18–20 kbars). Garnet lherzolites from the Baga Togo Uul vents near the dome edge were formed at 18–22 kbars under significantly cooler conditions (960–1,000°C). These xenoliths reveal reaction coronas of (1) orthopyroxene, clinopyroxene, plagioclase and spinel mantling garnets; (2) spongy rims of olivine replacing orthopyroxene and (3) low-Na, low-Al clinopyroxene replacing primary clinopyroxene. Trace-element abundances indicate that clinopyroxene from these coronas is in chemical equilibrium with the host magma. The thermobarometric and textural data suggest that lherzolite xenoliths from both sites were derived from depths of 60–70 km and entrained in magma at 1,200–1,300°C. The average rate of ascent, as determined by olivine zoning, lies in the range 0.2–0.3 m s−1. The contrast in thermal profiles of the upper mantle between the two sites is consistent with a mantle plume beneath the Hangay dome with elevated thermal conditions beneath the core of the dome being comparable to estimates of the Pleistocene geotherm beneath the Baikal rift.  相似文献   
956.
Microtextural changes brought about by heating alkali feldspar crystals from the Shap granite, northern England, at atmospheric pressure, have been studied using transmission and scanning electron microscopy. A typical unheated phenocryst from Shap is composed of about 70 vol% of tweed orthoclase with strain-controlled coherent or semicoherent micro- and crypto-perthitic albite lamellae, with maximum lamellar thicknesses <1 μm. Semicoherent lamellae are encircled by nanotunnel loops in two orientations and cut by pull-apart cracks. The average bulk composition of this microtexture is Ab27.6Or71.8An0.6. The remaining 30 vol% is deuterically coarsened, microporous patch and vein perthite composed of incoherent subgrains of oligoclase, albite and irregular microcline. The largest subgrains are ~3 μm in diameter. Heating times in the laboratory were 12 to 6,792 h and T from 300°C into the melting interval at 1,100°C. Most samples were annealed at constant T but two were heated to simulate an 40Ar/39Ar step-heating schedule. Homogenisation of strain-controlled lamellae by Na↔K inter-diffusion was rapid, so that in all run products at >700°C, and after >48 h at 700°C, all such regions were essentially compositionally homogeneous, as indicated by X-ray analyses at fine scale in the transmission electron microscope. Changes in lamellar thickness with time at different T point to an activation energy of ~350 kJmol−1. A lamella which homogenised after 6,800 h at 600°C, therefore, would have required only 0.6 s to do so in the melting interval at 1,100°C. Subgrains in patch perthite homogenised more slowly than coherent lamellae and chemical gradients in patches persisted for >5,000 h at 700°C. Homogenisation T is in agreement with experimentally determined solvi for coherent ordered intergrowths, when a 50–100°C increase in T for An1 is applied. Homogenisation of lamellae appears to proceed in an unexpected manner: two smooth interfaces, microstructurally sharp, advance from the original interfaces toward the mid-line of each twinned, semicoherent lamella. In places, the homogenisation interfaces have shapes reflecting the local arrangements of nanotunnels or pull-aparts. Analyses confirm that the change in alkali composition is also relatively sharp at these interfaces. Si–Al disordering is far slower than alkali homogenisation so that tweed texture in orthoclase, tartan twinning in irregular microcline, and Albite twins in albite lamellae and patches persisted in all our experiments, including 5,478 h at 700°C, 148 h at 1,000°C and 5 h at 1,100°C, even though the ensemble in each case was chemically homogeneous. Nanotunnels and pull-aparts were modified after only 50 min at 500°C following the simulated 40Ar/39Ar step-heating schedule. New features called ‘slots’ developed away from albite lamellae, often with planar traces linking slots to the closest lamella. Slot arrays were often aligned along ghost-like regions of diffraction contrast which may mark the original edges of lamellae. We suggest that the slot arrays result from healing of pull-aparts containing fluid. At 700°C and above, the dominant defects were subspherical ‘bubbles’, which evolved from slots or from regions of deuteric coarsening. The small degree of partial melting observed after 5 h at 1,100°C was often in the vicinity of bubbles. Larger micropores, which formed at subgrain boundaries in patch perthite during deuteric coarsening, retain their shape up to the melting point, as do the subgrain boundaries themselves. It is clear that modification of defects providing potential fast pathways for diffusion in granitic alkali feldspars begins below 500°C and that defect character progressively changes up to, and beyond, the onset of melting.  相似文献   
957.
958.
We report major and trace element composition, Sr–Nd isotopic and seismological data for a picrite–basalt–rhyolite suite from the northern Tarim uplift (NTU), northwest China. The samples were recovered from 13 boreholes at depths between 5,166 and 6,333 m. The picritic samples have high MgO (14.5–16.8 wt%, volatiles included) enriched in incompatible element and have high 87Sr/86Sr and low 143Nd/144Nd isotopic ratios (εNd (t) = −5.3; Sri = 0.707), resembling the Karoo high-Ti picrites. All the basaltic samples are enriched in TiO2 (2.1–3.2 wt%, volatiles free), have high FeOt abundances (11.27–15.75 wt%, volatiles free), are enriched in incompatible elements and have high Sr and low Nd isotopic ratios (Sri = 0.7049–0.7065; εNd (t) = −4.1 to −0.4). High Nb/La ratios (0.91–1.34) of basalts attest that they are mantle-derived magma with negligible crustal contamination. The rhyolite samples can be subdivided into two coeval groups with overlapping U–Pb zircon ages between 291 ± 4 and 272 ± 2 Ma. Group 1 rhyolites are enriched in Nb and Ta, have similar Nb/La, Nb/U, and Sr–Nd isotopic compositions to the associated basalts, implying that they are formed by fractional crystallization of the basalts. Group 2 rhyolites are depleted in Nb and Ta, have low Nb/La ratios, and have very high Sr and low Nd isotopic ratios, implying that crustal materials have been extensively, if not exclusively, involved in their source. The picrite–basalt–rhyolite suite from the NTU, together with Permian volcanic rocks from elsewhere Tarim basin, constitute a Large Igneous Province (LIP) that is characterized by large areal extent, rapid eruption, OIB-type chemical composition, and eruption of high temperature picritic magma. The Early Permian magmatism, which covered an area >300,000 km2, is therefore named the Tarim Flood Basalt.  相似文献   
959.
The consensus view is that the O2 concentration of the Archean atmosphere was very low and that it rose to its present level of 21% in a series of steps, two of which dwarf the others in importance. The first, known as the Great Oxidation Event, occurred at ∼2.4 Ga. It involved an increase in the relative abundance of O2, which has been estimated at three orders of magnitude, and it is important because it led to the first surface weathering. The second, although less important in relative terms, involved the addition of 9 × 1017 kg of O2 to the atmosphere, at least ten times as much as that required to produce the Great Oxidation Event. Its importance lies in the fact that it correlates with the rise of animals in the Ediacaran and Early Cambrian periods. Although it is widely accepted that an increase in atmospheric O2 facilitated the appearance of animals at ∼575 Ma, followed by the Cambrian Explosion ∼50 Myr later, the cause of this increase remains controversial. We show that the surge in the O2 level near the Precambrian-Cambrian boundary correlates with major episodes of continent-continent collision associated with Gondwana’s amalgamation, including convergence between East and West Gondwana, which produced the 8000-km-long Transgondwanan Supermountains. The eroded roots of these mountains include the oldest lawsonite-bearing blueschists and eclogites, and ultra high-pressure metamorphic rocks. The sudden appearance of these low-thermal gradient, high-pressure metamorphic rocks implies that the Gondwanan orogenic zones were cooler and stronger than those associated with the assembly of earlier supercontinents and therefore capable of supporting higher mountains.There is a log-linear relationship between relief and erosion rate, and a linear relationship between sedimentation rate and organic C burial. Taken together these two relationships imply a log-linear relationship between relief and C sequestration. We suggest that the Gondwanan supermountains were higher than those produced during the assembly of earlier supercontinents and that rapid erosion of these mountains released a large flux of essential nutrients, including Fe and P, into the rivers and oceans, which triggered an explosion of algae and cyanobacteria. This, in turn, produced a marked increase in the production rate of photosynthetic O2. Rapid sedimentation during this period promoted high rates of burial of biogenic pyrite and organic matter generated during photosynthesis so that they could not back react with O2, leading to a sustained increase in atmospheric O2.  相似文献   
960.
The thick piles of late-Archean volcaniclastic sedimentary successions that overlie the voluminous greenstone units of the eastern Yilgarn Craton, Western Australia, record the important transition from the cessation in mafic-ultramafic volcanism to cratonisation between about 2690 and 2655 Ma. Unfortunately, an inability to clearly subdivide the superficially similar sedimentary successions and correlate them between the various geological terranes and domains of the eastern Yilgarn Craton has led to uncertainty about the timing and nature of the region's palaeogeographic and palaeotectonic evolution. Here, we present the results of some 2025 U–Pb laser-ablation-ICP-MS analyses and 323 Sensitive High-Resolution Ion Microprobe (SHRIMP) analyses of detrital zircons from 14 late-Archean felsic clastic successions of the eastern Yilgarn Craton, which have enabled correlation of clastic successions. The results of our data, together with those compiled from previous studies, show that the post-greenstone sedimentary successions include two major cycles that both commenced with voluminous pyroclastic volcanism and ended with widespread exhumation and erosion associated with granite emplacement. Cycle One commences with an influx of rapidly reworked feldspar-rich pyroclastic debris. These units, here-named the Early Black Flag Group, are dominated by a single population of detrital zircons with an average age of 2690–2680 Ma. Thick (up to 2 km) dolerite bodies, such as the Golden Mile Dolerite, intrude the upper parts of the Early Black Flag Group at about 2680 Ma. Incipient development of large granite domes during Cycle One created extensional basins predominantly near their southeastern and northwestern margins (e.g., St Ives, Wallaby, Kanowna Belle and Agnew), into which the Early Black Flag Group and overlying coarse mafic conglomerate facies of the Late Black Flag Group were deposited. The clast compositions and detrital-zircon ages of the late Black Flag Group detritus match closely the nearby and/or stratigraphically underlying successions, thus suggesting relatively local provenance. Cycle Two involved a similar progression to that observed in Cycle One, but the age and composition of the detritus were notably different. Deposition of rapidly reworked quartz-rich pyroclastic deposits dominated by a single detrital-zircon age population of 2670–2660 Ma heralded the beginning of Cycle Two. These coarse-grained quartz-rich units, are name here the Early Merougil Group. The mean ages of the detrital zircons from the Early Merougil Group match closely the age of the peak in high-Ca (quartz-rich) granite magmatism in the Yilgarn Craton and thus probably represent the surface expression of the same event. Successions of the Late Merougil Group are dominated by coarse felsic conglomerate with abundant volcanic quartz. Although the detrital zircons in these successions have a broad spread of age, the principal sub-populations have ages of about 2665 Ma and thus match closely those of the Early Merougil Group. These successions occur most commonly at the northwestern and southeastern margins of the granite batholiths and thus are interpreted to represent resedimented units dominted by the stratigraphically underlying packages of the Early Merougil Group. The Kurrawang Group is the youngest sedimentary units identified in this study and is dominated by polymictic conglomerate with clasts of banded iron formation (BIF), granite and quartzite near the base and quartz-rich sandstone units containing detrital zircons aged up to 3500 Ma near the top. These units record provenance from deeper and/or more-distal sources. We suggest here that the principal driver for the major episodes of volcanism, sedimentation and deformation associated with basin development was the progressive emplacement of large granite batholiths. This interpretation has important implication for palaeogeographic and palaeotectonic evolution of all late-Archean terranes around the world.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号