首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23583篇
  免费   222篇
  国内免费   130篇
测绘学   372篇
大气科学   1236篇
地球物理   4504篇
地质学   9145篇
海洋学   2278篇
天文学   5372篇
综合类   43篇
自然地理   985篇
  2022年   265篇
  2021年   436篇
  2020年   413篇
  2019年   477篇
  2018年   946篇
  2017年   873篇
  2016年   896篇
  2015年   378篇
  2014年   787篇
  2013年   1324篇
  2012年   907篇
  2011年   1105篇
  2010年   1089篇
  2009年   1233篇
  2008年   1058篇
  2007年   1240篇
  2006年   1082篇
  2005年   583篇
  2004年   559篇
  2003年   560篇
  2002年   593篇
  2001年   526篇
  2000年   426篇
  1999年   349篇
  1998年   336篇
  1997年   335篇
  1996年   263篇
  1995年   271篇
  1994年   241篇
  1993年   191篇
  1992年   215篇
  1991年   198篇
  1990年   205篇
  1989年   191篇
  1988年   164篇
  1987年   190篇
  1986年   179篇
  1985年   216篇
  1984年   207篇
  1983年   205篇
  1982年   199篇
  1981年   180篇
  1980年   168篇
  1979年   188篇
  1978年   165篇
  1977年   152篇
  1976年   137篇
  1975年   142篇
  1974年   129篇
  1973年   168篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
261.
A methodology is presented for the joint computation of aerodynamic and radiation forces acting on orbital spacecraft. Special attention is given to the computation of the radiation component. The reliability of the results is confirmed by comparing them with those obtained by other methods and flight measurements. Results are presented of a study of the combined impact induced by solar radiation and the upper atmosphere on the small spacecraft MKAFKI (Zond-PP).  相似文献   
262.
We calibrated the 81Kr‐Kr dating system for ordinary chondrites of different sizes using independent shielding‐corrected 36Cl‐36Ar ages. Krypton concentrations and isotopic compositions were measured in bulk samples from 14 ordinary chondrites of high petrologic type and the cosmogenic Kr component was obtained by subtracting trapped Kr from phase Q. The thus‐determined average cosmogenic 78Kr/83Kr, 80Kr/83Kr, 82Kr/83Kr, and 84Kr/83Kr ratiC(Lavielle and Marti 1988; Wieler 2002). The cosmogenic 78Kr/83Kr ratio is correlated with the cosmogenic 22Ne/21Ne ratio, confirming that 78Kr/83Kr is a reliable shielding indicator. Previously, 81Kr‐Kr ages have been determined by assuming the cosmogenic production rate of 81Kr, P(81Kr)c, to be 0.95 times the average of the cosmogenic production rates of 80Kr and 82Kr; the factor = 0.95 therefore accounts for the unequal production of the various Kr isotopes (Marti 1967a). However, Y should be regarded as an empirical adjustment. For samples whose 80Kr and 82Kr concentrations may be affected by neutron‐capture reactions, the shielding‐dependent cosmogenic (78Kr/83Kr)c ratio has been used instead to calculate P(81Kr)/P(83Kr), as for some lunar samples, this ratio has been shown to linearly increase with (78Kr/83Kr)c (Marti and Lugmair 1971). However, the 81Kr‐Kr ages of our samples calculated with these methods are on average ~30% higher than their 36Cl‐36Ar ages, indicating that most if not all the 81Kr‐Kr ages determined so far are significantly too high. We therefore re‐evaluated both methods to determine P(81Kr)c/P(83Kr)c. Our new Y value of 0.70 ± 0.04 is more than 25% lower than the value of 0.95 used so far. Furthermore, together with literature data, our data indicate that for chondrites, P(81Kr)c/P(83Kr)c is rather constant at 0.43 ± 0.02, at least for the shielding range covered by our samples ([78Kr/83Kr]c = 0.119–0.185; [22Ne/21Ne]c = 1.083–1.144), in contrast to the observations on lunar samples. As expected considering the method used, 81Kr‐Kr ages calculated either directly with this new P(81Kr)c/P(83Kr)c value or with our new Y value both agree with the corresponding 36Cl‐36Ar ages. However, the average deviation of 2% indicates the accuracy of both new 81Kr‐Kr dating methods and the precision of the new dating systems of ~10% is demonstrated by the low scatter in the data. Consequently, this study indicates that the 81Kr‐Kr ages published so far are up to 30% too high.  相似文献   
263.
The field equations of the New General Relativity NGR, constructed by Hayashi and Shirafuji (1979), have been applied to two geometric structures, given by Robertson (1932), in the domain of cosmology. In the first application a family of models, involving two of the parameters characterizing the field equations of the NGR, is obtained. In the second application the models obtained are found to involve one parameter only. The cosmological parameters in both applications are calculated and some cosmological problems are discussed in comparison with the corresponding results of other field theories .  相似文献   
264.
EChOSim is the end-to-end time-domain simulator of the Exoplanet Characterisation Observatory (EChO) space mission. EChOSim has been developed to assess the capability of the EChO mission concept to detect and characterise the atmospheres of transiting exoplanets. Here we discuss the details of the EChOSim implementation and describe the models used to represent the instrument and to simulate the detection. Software simulators have assumed a central role in the design of new instrumentation and in assessing the level of systematics affecting the measurements of existing experiments. Thanks to its high modularity, EChOSim can simulate basic aspects of several existing and proposed spectrometers including instruments on the Hubble Space Telescope and Spitzer, ground-based and balloon-borne experiments. A discussion of different uses of EChOSim is given, including examples of simulations performed to assess the EChO mission.  相似文献   
265.
The matrix of primitive chondrites is composed of submicron crystals embedded in amorphous silicates. These grains are thought to be the remains of relatively unprocessed dust from the inner regions of the protoplanetary disk. The matrix of primitive meteorites is often compared to chondritic porous interplanetary dust particles (CP-IDPs) which are believed to be of cometary origin, having accreted in the outermost regions of the solar nebula. Crystalline grains in CP-IDPs show evidence of a size–density relationship between the silicates and sulfides suggesting that these components experienced sorting prior to accretion. Here, we investigate whether such evidence of sorting is also present in the matrix constituents of primitive chondrites. We report findings from our study of grain size distributions of discrete silicate and opaque (sulfide and metal) grains within the matrix of the primitive meteorites Acfer 094 (C2-ung.), ALHA77307 (CO3), MIL 07687 (C3-ung.), and QUE 99177 (CR2). Mean radii of matrix silicate grains range from 103 nm in QUE 99177 to 2018 nm in MIL 07687. The opaque grains show a wider variation, with average radii ranging from 15 nm in QUE 99177 to 219 nm in MIL07687. Our results indicate that, in contrast to CP-IDPs, the size distribution of matrix components of these primitive meteorites cannot be explained by aerodynamic sorting that took place prior to accretion. We conclude that any evidence of sorting is likely to have been lost due to a greater variety and degree of processing experienced on these primitive chondrites than on cometary parent bodies.  相似文献   
266.
We present the results of our visual and near-infrared spectrophotometric observations for 77 variable stars obtained during 1971–1991 in Chile, Armenia, and Bolivia. The quasi-monochromatic, extraatmospheric fluxes from the stars are given in absolute energy units (W m?2 m?1) at all wavelengths of the spectral range at 2.5-nm intervals.  相似文献   
267.
The physical meaning of the terms of the potential and kinetic energy expressions, expanded by means of the density variation function for a nonuniform self-gravitating sphere, is discussed. The terms of the expansions represent the energy and the moment of inertia of the uniform sphere, the energy and the moment of inertia of the nonuniformities interacting with the uniform sphere, and the energy of the nonuniformities interacting with each other. It follows from the physical meaning of the above components of the energy structure, and also from the observational fact of the expansion of the Universe that the phase transition, notably, fusion of particles and nuclei and condensation of liquid and solid phases of the expanded matter accompanied by release of energy, must be the physical cause of initial thermal and gravitational instability of the matter. The released kinetic energy being constrained by the general motion of the expansion, develops regional and local turbulent (cyclonic) motion of the matter, which should be the second physical effect responsible for the creation of celestial bodies and their rotation.  相似文献   
268.
Photospheric magnetic fields were studied using the Kitt Peak synoptic maps for 1976?–?2003. Only strong magnetic fields (B>100 G) of the equatorial region were taken into account. The north–south asymmetry of the magnetic fluxes was considered as well as the imbalance between positive and negative fluxes. The north–south asymmetry displays a regular alternation of the dominant hemisphere during the solar cycle: the northern hemisphere dominated in the ascending phase, the southern one in the descending phase during Solar Cycles 21?–?23. The sign of the imbalance did not change during the 11 years from one polar-field reversal to the next and always coincided with the sign of the Sun’s polar magnetic field in the northern hemisphere. The dominant sign of leading sunspots in one of the hemispheres determines the sign of the magnetic-flux imbalance. The sign of the north–south asymmetry of the magnetic fluxes and the sign of the imbalance of the positive and the negative fluxes are related to the quarter of the 22-year magnetic cycle where the magnetic configuration of the Sun remains constant (from the minimum where the sunspot sign changes according to Hale’s law to the magnetic-field reversal and from the reversal to the minimum). The sign of the north–south asymmetry for the time interval considered was determined by the phase of the 11-year cycle (before or after the reversal); the sign of the imbalance of the positive and the negative fluxes depends on both the phase of the 11-year cycle and on the parity of the solar cycle. The results obtained demonstrate the connection of the magnetic fields in active regions with the Sun’s polar magnetic field in the northern hemisphere.  相似文献   
269.
We study the solar-cycle variation of the zonal flow in the near-surface layers of the solar convection zone from the surface to a depth of 16 Mm covering the period from mid-2001 to mid-2013 or from the maximum of Cycle 23 through the rising phase of Cycle 24. We have analyzed Global Oscillation Network Group (GONG) and Helioseismic and Magnetic Imager (HMI) Dopplergrams with a ring-diagram analysis. The zonal flow varies with the solar cycle showing bands of faster-than-average flows equatorward of the mean latitude of activity and slower-than-average flows on the poleward side. The fast band of the zonal flow and the magnetic activity appear first in the northern hemisphere during the beginning of Cycle 24. The bands of fast zonal flow appear at mid-latitudes about three years in the southern and four years in the northern hemisphere before magnetic activity of Cycle 24 is present. This implies that the flow pattern is a direct precursor of magnetic activity. The solar-cycle variation of the zonal flow also has a poleward branch, which is visible as bands of faster-than-average zonal flow near 50° latitude. This band appears first in the southern hemisphere during the rising phase of the Cycle 24 and migrates slowly poleward. These results are in good agreement with corresponding results from global helioseismology.  相似文献   
270.
The 270 chromospheric emission lines of Feii ranging between 2000 and 3200 Å observed by Skylab at a height of 4 (2900 km) above the limb of the quiet Sun are analyzed by the emission curve of growth method, using newly calculated gf-values. It is derived that the excitation temperature is 7.2 × 103 K and that the turbulent velocity is consistent with the previous results that the microturbulent velocity is lower than 10 km s–1 in the cool (<104 K) region of the chromosphere.Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 270.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号