首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8007篇
  免费   1423篇
  国内免费   1955篇
测绘学   400篇
大气科学   1959篇
地球物理   2041篇
地质学   4072篇
海洋学   822篇
天文学   381篇
综合类   801篇
自然地理   909篇
  2024年   22篇
  2023年   128篇
  2022年   356篇
  2021年   387篇
  2020年   311篇
  2019年   333篇
  2018年   430篇
  2017年   400篇
  2016年   457篇
  2015年   351篇
  2014年   440篇
  2013年   462篇
  2012年   359篇
  2011年   390篇
  2010年   422篇
  2009年   424篇
  2008年   417篇
  2007年   374篇
  2006年   342篇
  2005年   310篇
  2004年   219篇
  2003年   263篇
  2002年   258篇
  2001年   225篇
  2000年   288篇
  1999年   412篇
  1998年   370篇
  1997年   382篇
  1996年   339篇
  1995年   277篇
  1994年   252篇
  1993年   185篇
  1992年   165篇
  1991年   125篇
  1990年   85篇
  1989年   94篇
  1988年   84篇
  1987年   57篇
  1986年   42篇
  1985年   32篇
  1984年   21篇
  1983年   24篇
  1982年   10篇
  1981年   15篇
  1980年   17篇
  1979年   10篇
  1978年   5篇
  1977年   4篇
  1958年   9篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
利用人机交互方式定义气象指数计算公式,设计了西藏地区常用气象指数计算系统。该系统在统一的操作界面上定义和读取输入气象数据,包括数值预报、实况数据、预报产品等数据及站号、经度、纬度和时间信息,将相应的数据以浮点数代入公式,并支持加、减、乘、除、乘方等数学运算符,三角对数、绝对值等数学函数,且、或、否等逻辑函数,≥、>、≤、<、=等判断运算符及自定义的分段函数,能够完成多项气象指数的计算,数据均以通用的MICPAS格式交互存储,在统一的平台上管理气象指数及产品制作,无需预报和服务人员编程即可实现新的气象指数。  相似文献   
952.
分析了危害弱电设备的主要电涌类型及特点,探讨了在实际防雷工程中低压配电系统中常用的氧化锌(ZnO)电涌保护器(SPD)存在启动电压偏高,对耐过电压能力较低的电气电子设备存在对电涌防护不到位的问题;将隔离变压器作为防电涌器件引入到弱电设备防雷工程中,利用初级绕组与次级绕组之间只有电磁耦合,无直接电气通道的特性隔离共模过电压;利用铁芯的磁饱和、磁滞现象抑制和削减雷击感应过电压的差模分量。将隔离变压器用于氧化锌电涌保护器之后作为精保护单元,弥补氧化锌电涌保护器的缺点,使弱电设备得到可靠保护,经实际运用验证了它的防雷效果。  相似文献   
953.
The interaction between tropical cyclone (TC) and the large-scale mean flows such as the inter-tropical convergence zone (ITCZ) is investigated using a three-dimensional primitive equation model. Once a TC develops in the vicinity of the ITCZ region where satisfies both barotropic and baroclinic instabilities, the southeastward energy dispersion from the TC may disturb the ITCZ and thus help its breakdown. Cumulus convection can be organized in the region of cyclonic circulation, and the interaction between convective heating and the perturbation circulation may enhance the development of the waves, leading to the generation of a new tropical cyclone to the east. While the TC moves to the high latitude, the ITCZ will reform. Though repeating of this process, a synoptic-scale wave train oriented in the northwest-southeast direction can be generated and self-maintained. The results suggest that the mutual interaction among the low-frequency background flow, wave train pattern and TCs provides a possible mechanism for the origin of the summer synoptic scale wave train pattern over the western North Pacific.  相似文献   
954.
955.
The performances of various dynamical models from the Asia-Pacific Economic Cooperation(APEC) Climate Center(APCC) multi-model ensemble(MME) in predicting station-scale rainfall in South China(SC) in June were evaluated.It was found that the MME mean of model hindcasts can skillfully predict the June rainfall anomaly averaged over the SC domain.This could be related to the MME's ability in capturing the observed linkages between SC rainfall and atmospheric large-scale circulation anomalies in the Indo-Pacific region.Further assessment of station-scale June rainfall prediction based on direct model output(DMO) over 97 stations in SC revealed that the MME mean outperforms each individual model.However,poor prediction abilities in some in-land and southeastern SC stations are apparent in the MME mean and in a number of models.In order to improve the performance at those stations with poor DMO prediction skill,a station-based statistical downscaling scheme was constructed and applied to the individual and MME mean hindcast runs.For several models,this scheme can outperform DMO at more than 30 stations,because it can tap into the abilities of the models in capturing the anomalous Indo-Paciric circulation to which SC rainfall is considerably sensitive.Therefore,enhanced rainfall prediction abilities in these models should make them more useful for disaster preparedness and mitigation purposes.  相似文献   
956.
We evaluated the potential impact of future climate change on spring maize and single-crop rice in northeastern China(NEC) by employing climate and crop models. Based on historical data, diurnal temperature change exhibited a distinct negative relationship with maize yield, whereas minimum temperature correlated positively to rice yield. Corresponding to the evaluated climate change derived from coupled climate models included in the Coupled Model Intercomparison Project Phase 5(CMIP5) under the Representative Concentration Pathway 4.5 scenario(RCP4.5), the projected maize yield changes for three future periods [2010–39(period 1), 2040–69(period 2), and 2070–99(period 3)] relative to the mean yield in the baseline period(1976–2005) were 2.92%, 3.11% and 2.63%, respectively. By contrast, the evaluated rice yields showed slightly larger increases of 7.19%, 12.39%, and 14.83%, respectively. The uncertainties in the crop response are discussed by considering the uncertainties obtained from both the climate and the crop models. The range of impact of the uncertainty became markedly wider when integrating these two sources of uncertainty. The probabilistic assessments of the evaluated change showed maize yield to be relatively stable from period 1 to period 3, while the rice yield showed an increasing trend over time. The results presented in this paper suggest a tendency of the yields of maize and rice in NEC to increase(but with great uncertainty) against the background of global warming, which may offer some valuable guidance to government policymakers.  相似文献   
957.
958.
The role of the Indonesian Throughflow(ITF) in the influence of the Indian Ocean Dipole(IOD) on ENSO is investigated using version 2 of the Parallel Ocean Program(POP2) ocean general circulation model. We demonstrate the results through sensitivity experiments on both positive and negative IOD events from observations and coupled general circulation model simulations. By shutting down the atmospheric bridge while maintaining the tropical oceanic channel, the IOD forcing is shown to influence the ENSO event in the following year, and the role of the ITF is emphasized. During positive IOD events,negative sea surface height anomalies(SSHAs) occur in the eastern Indian Ocean, indicating the existence of upwelling.These upwelling anomalies pass through the Indonesian seas and enter the western tropical Pacific, resulting in cold anomalies there. These cold temperature anomalies further propagate to the eastern equatorial Pacific, and ultimately induce a La Nia-like mode in the following year. In contrast, during negative IOD events, positive SSHAs are established in the eastern Indian Ocean, leading to downwelling anomalies that can also propagate into the subsurface of the western Pacific Ocean and travel further eastward. These downwelling anomalies induce negative ITF transport anomalies, and an El Nio-like mode in the tropical eastern Pacific Ocean that persists into the following year. The effects of negative and positive IOD events on ENSO via the ITF are symmetric. Finally, we also estimate the contribution of IOD forcing in explaining the Pacific variability associated with ENSO via ITF.  相似文献   
959.
The predictability of the position, spatial coverage and intensity of the East Asian subtropical westerly jet(EASWJ) in the summers of 2010 to 2012 was examined for ensemble prediction systems(EPSs) from four representative TIGGE centers,including the ECMWF, the NCEP, the CMA, and the JMA. Results showed that each EPS predicted all EASWJ properties well, while the levels of skill of all EPSs declined as the lead time extended. Overall, improvements from the control to the ensemble mean forecasts for predicting the EASWJ were apparent. For the deterministic forecasts of all EPSs, the prediction of the average axis was better than the prediction of the spatial coverage and intensity of the EASWJ. ECMWF performed best, with a lead of approximately 0.5–1 day in predictability over the second-best EPS for all EASWJ properties throughout the forecast range. For probabilistic forecasts, differences in skills among the different EPSs were more evident in the earlier part of the forecast for the EASWJ axis and spatial coverage, while they departed obviously throughout the forecast range for the intensity. ECMWF led JMA by about 0.5–1 day for the EASWJ axis, and by about 1–2 days for the spatial coverage and intensity at almost all lead times. The largest lead of ECMWF over the relatively worse EPSs, such as NCEP and CMA, was approximately 3–4 days for all EASWJ properties. In summary, ECMWF showed the highest level of skill for predicting the EASWJ, followed by JMA.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号