首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   3篇
  国内免费   7篇
测绘学   3篇
大气科学   25篇
地球物理   52篇
地质学   43篇
海洋学   15篇
天文学   16篇
自然地理   2篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   1篇
  2014年   7篇
  2013年   13篇
  2012年   4篇
  2011年   9篇
  2010年   6篇
  2009年   6篇
  2008年   9篇
  2007年   6篇
  2006年   17篇
  2005年   5篇
  2004年   3篇
  2003年   5篇
  2002年   8篇
  2001年   6篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1984年   2篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1933年   2篇
排序方式: 共有156条查询结果,搜索用时 531 毫秒
121.
A. Wu  W. W. Hsieh 《Climate Dynamics》2003,21(7-8):719-730
Nonlinear interdecadal changes in the El Niño-Southern Oscillation (ENSO) phenomenon are investigated using several tools: a nonlinear canonical correlation analysis (NLCCA) method based on neural networks, a hybrid coupled model, and the delayed oscillator theory. The leading NLCCA mode between the tropical Pacific wind stress (WS) and sea surface temperature (SST) reveals notable interdecadal changes of ENSO behaviour before and after the mid 1970s climate regime shift, with greater nonlinearity found during 1981–99 than during 1961–75. Spatial asymmetry (for both SST and WS anomalies) between warm El Niño and cool La Niña events was significantly enhanced in the later period. During 1981–99, the location of the equatorial easterly anomalies was unchanged from the earlier period, but in the opposite ENSO phase, the westerly anomalies were shifted eastward by up to 25°. According to the delayed oscillator theory, such an eastward shift would lengthen the duration of the warm events by up to 45%, but leave the duration of the cool events unchanged. Supporting evidence was found from a hybrid coupled model built with the Lamont dynamical ocean model coupled to a statistical atmospheric model consisting of either the leading NLCCA or CCA mode.  相似文献   
122.
We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies.  相似文献   
123.
124.
Field characterization of a trichloroethene (TCE) source area in fractured mudstones produced a detailed understanding of the geology, contaminant distribution in fractures and the rock matrix, and hydraulic and transport properties. Groundwater flow and chemical transport modeling that synthesized the field characterization information proved critical for designing bioremediation of the source area. The planned bioremediation involved injecting emulsified vegetable oil and bacteria to enhance the naturally occurring biodegradation of TCE. The flow and transport modeling showed that injection will spread amendments widely over a zone of lower‐permeability fractures, with long residence times expected because of small velocities after injection and sorption of emulsified vegetable oil onto solids. Amendments transported out of this zone will be diluted by groundwater flux from other areas, limiting bioremediation effectiveness downgradient. At nearby pumping wells, further dilution is expected to make bioremediation effects undetectable in the pumped water. The results emphasize that in fracture‐dominated flow regimes, the extent of injected amendments cannot be conceptualized using simple homogeneous models of groundwater flow commonly adopted to design injections in unconsolidated porous media (e.g., radial diverging or dipole flow regimes). Instead, it is important to synthesize site characterization information using a groundwater flow model that includes discrete features representing high‐ and low‐permeability fractures. This type of model accounts for the highly heterogeneous hydraulic conductivity and groundwater fluxes in fractured‐rock aquifers, and facilitates designing injection strategies that target specific volumes of the aquifer and maximize the distribution of amendments over these volumes.  相似文献   
125.
126.
A new approach is proposed to analyze the surface flow and subsurface flow passing over a pervious ground under a uniform rainfall excess. The flow field is divided into two regions that are called water layer and soil layer. To figure out the hydraulic behavior of overland flow on an inclined plane under a rainfall event, the simplified Navier–Stokes equations are employed for the surface water flow, and the flow inside the soil layer is porous media flow, which is governed by Biot's (1956, 1962) theory of poroelasticity. The velocity distribution of overland flow is nonzero at the ground surface. The relation between water depth and slope length was developed first. The profile of surface water flow was then found backwards from the downstream end of the flow section by the Runge–Kutta method. After that, the flow velocity and flow discharge of each layer could also be obtained via the water depth. Finally, the variation of fluid shear stress inside the soil layer is also discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
127.
This paper presents a field investigation of aromatic volatile organic compounds (AVOCs) emissions from a sequence batch reactor (SBR) with powdered activated carbon (PAC) to treat the wastewater in a large petroleum refinery plant. AVOC with high Henry's constant preferred to transfer from liquid‐phase into air‐phase so that might cause the emission and odor problem. During SBR operation, AVOC concentrations and distributions in wastewater, sludge and off‐gas were analyzed. The total AVOC removal from wastewater was >99% under the kinetic parameters of SBR operated. Batch experiments were carried out in the laboratory to obtain the adsorptive characteristic of AVOC onto PAC, but the results showed that bio‐degradation was the main removal mechanism (85%). Nevertheless, off‐gas emission (<1%) and AVOC in the sludge (<0.1%) remained a stable level. Oxidation/reduction potential (ORP) was correlated to the logarithm of the dissolved oxygen (DO) concentration in a linear relationship so that ORP profile could indirectly reflect the DO and biomass concentrations. Since the influent AVOC concentration was varied and difficultly to measure, ORP could be used as real‐time parameter for optimizing SBR operation. The results provided useful information for future evaluation of AVOC emissions from wastewater treatment plants.  相似文献   
128.
In many instances soils can be assumed to behave like viscoelastic materials during loading/unloading cycles, and this study is aimed at setting up a viscoelastic model to investigate the dynamic response of a porous soil layer of finite thickness under the effect of periodically linear water waves. The waves and homogeneous water are described by potential theory and the porous material is described by a viscoelastic model, which is modified from Biot's poroelastic theory (1956). The distributions of pore water pressures and effective stresses of various soils such as silt, sand, and gravel are demonstrated by employing the proposed viscoelastic model. The discrepancies of the dynamic response between the simulations of viscoelastic model and elastic model are found to be strongly dependent on the wave frequency. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
129.
The ELectron Spectrometer (ELS) from the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) flown on the Mars Express spacecraft has an 8% energy resolution, combined with the capability to oversample the martian electron distribution. This makes possible the resolution and identification of electrons generated as a result of the He 304 Å ionization of CO2 at the martian exobase on the dayside of the planet. Ionospheric photoelectrons were observed during almost every pass into the ionosphere and CO2 photoelectron peaks were identified near the terminator. Atmospherically generated CO2 photoelectrons are also observed at 10,000 km altitude in the martian tail near the inner magnetospheric boundary. Observations over a wide range of spacecraft orbits showed a consistent presence of photoelectrons at locations along the inner magnetospheric boundary and in the ionosphere, from an altitude of 250 to 10,000 km.  相似文献   
130.
Using data of the ASPERA-3 instrument on board the European Mars Express spacecraft we investigate the effect of the martian crustal fields on electrons intruding from the magnetosheath. For the crustal field strength we use published data obtained by the Mars Global Surveyor MAG/ER instrument for a fixed altitude of 400 km. We use statistics on 13 months of 80-100 eV electron observations to show that the electron intrusion altitude determined by a probability measure is approximately linearly dependent on the total field strength at 400 km altitude. We show that on the dayside the mean electron intrusion altitude describes the location of the Magnetic Pile-Up Boundary (MPB) such that we can quantify the effect of the crustal fields on the MPB. On the nightside we quantify the shielding of precipitating electrons by the crustal fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号