首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   23篇
  国内免费   3篇
测绘学   27篇
大气科学   128篇
地球物理   106篇
地质学   248篇
海洋学   21篇
天文学   77篇
综合类   2篇
自然地理   22篇
  2021年   11篇
  2020年   10篇
  2019年   4篇
  2018年   15篇
  2017年   14篇
  2016年   22篇
  2015年   11篇
  2014年   28篇
  2013年   44篇
  2012年   36篇
  2011年   21篇
  2010年   20篇
  2009年   36篇
  2008年   27篇
  2007年   30篇
  2006年   13篇
  2005年   15篇
  2004年   7篇
  2003年   16篇
  2002年   14篇
  2001年   15篇
  2000年   8篇
  1999年   8篇
  1998年   7篇
  1997年   15篇
  1996年   10篇
  1995年   17篇
  1994年   6篇
  1991年   7篇
  1990年   5篇
  1988年   4篇
  1987年   8篇
  1986年   5篇
  1984年   8篇
  1983年   9篇
  1982年   4篇
  1981年   7篇
  1980年   5篇
  1979年   4篇
  1978年   6篇
  1976年   5篇
  1974年   4篇
  1972年   3篇
  1965年   4篇
  1960年   3篇
  1959年   3篇
  1958年   3篇
  1955年   5篇
  1952年   6篇
  1951年   5篇
排序方式: 共有631条查询结果,搜索用时 31 毫秒
241.
The angular rotation velocities of stable, recurrent sunspots were investigated using data from the Greenwich Photoheliographic Results 1940 until 1968. We found constant rotation velocities during the passages on the solar disk with errors of about ±4 m s–1. During their lifetime these spots show a decreasing braking of their rotation velocities from 0.8 to 0.3 m s–1 per day. A plausible interpretation is found by assuming the spots to be coupled to a slowly rising subsurface flux tube and a rotation velocity which increases with depth.Mitteilungen aus dem Kiepenheuer-Institut Nr. 201.  相似文献   
242.
243.
244.
Doklady Earth Sciences - The crystal structure of a potentially new mineral, the Fe2+-dominant analogue of armalcolite with the idealized formula Fe2+Ti2O5 has been solved. The sample studied...  相似文献   
245.
The quality of the links between the different space geodetic techniques (VLBI, SLR, GNSS and DORIS) is still one of the major limiting factors for the realization of a unique global terrestrial reference frame that is accurate enough to allow the monitoring of the Earth system, i.e., of processes like sea level change, postglacial rebound and silent earthquakes. According to the specifications of the global geodetic observing system of the International Association of Geodesy, such a reference frame should be accurate to 1 mm over decades, with rates of change stable at the level of 0.1 mm/year. The deficiencies arise from inaccurate or incomplete local ties at many fundamental sites as well as from systematic instrumental biases in the individual space geodetic techniques. Frequently repeated surveys, the continuous monitoring of antenna heights and the geometrical mount stability (Lösler et al. in J Geod 90:467–486, 2016.  https://doi.org/10.1007/s00190-016-0887-8) have not provided evidence for insufficient antenna stability. Therefore, we have investigated variations in the respective system delays caused by electronic circuits, which is not adequately captured by the calibration process, either because of subtle differences in the circuitry between geodetic measurement and calibration, high temporal variability or because of lacking resolving bandwidth. The measured system delay variations in the electric chain of both VLBI- and SLR systems reach the order of 100 ps, which is equivalent to 3 cm of path length. Most of this variability is usually removed by the calibrations but by far not all. This paper focuses on the development of new technologies and procedures for co-located geodetic instrumentation in order to identify and remove systematic measurement biases within and between the individual measurement techniques. A closed-loop optical time and frequency distribution system and a common inter-technique reference target provide the possibility to remove variable system delays. The main motivation for the newly established central reference target, locked to the station clock, is the combination of all space geodetic instruments at a single reference point at the observatory. On top of that it provides the unique capability to perform a closure measurement based on the observation of time.  相似文献   
246.
The thermal springs alongside Wadi Araba, Dead Sea and Jordan valley, Jordan, were investigated and sampled in a comprehensive field study of 2 weeks. Conventional physicochemical properties were measured in situ; dissolved solids and isotopic composition were analyzed. Two main spring locations on the east side of the Dead Sea were mapped. It became evident, that the hottest springs are among the closest to prominent faults; some springs are controlled by gas lift. Jordan’s hot springs are described by means of a broad hydrochemical and physicochemical data set and several figures are presented. Based on their hydrochemistry, the thermal springs are classified into four thermal provinces. Water genesis is discussed. Several geothermometers are applied to estimate reservoir temperatures. Observed discharge rate, water temperature and isotopic composition are compared with data from the literature. Although discharge and water temperature are reported to be constant over the last decades, groundwater overexploitation led to a shift of the isotopic composition, what is documented for the first time in Jordan. Thus, the effect of groundwater mining on Jordan’s hot springs can be stated as a fact.  相似文献   
247.
Although Germany is not among the most hazard-prone regions of the world, it does experience various natural hazards that have caused considerable economic and human losses in the past. Moreover, risk due to natural hazards is expected to increase in several regions of Germany if efficient risk management is not able to accommodate global changes. The most important natural hazards, in terms of past human and economic damage they caused, are storms, floods, extreme temperatures and earthquakes. They all show a pronounced spatial and temporal variability. In the present article, a review of these natural hazards, associated risks and their management in Germany is provided. This review reveals that event and risk analyses, as well as risk management, predominantly focus on one single hazard, generally not considering the cascading and conjoint effects in a full multi-hazard and risks approach. However, risk management would need integrated multi-risk analyses to identify, understand, quantify and compare different natural hazards and their impacts, as well as their interactions.  相似文献   
248.
Global, glacio-eustatic sea-level changes massively influenced the depositional history of the Central Paratethyan region. Here, we correlate Middle Miocene global δ18O-shifts with ice volume changes on Antarctica and sea-level changes with corresponding phases of erosion (valley incision) and deposition in the Lower Austrian part of the Alpine–Carpathian Foredeep. This allows the exact dating of the valley formation. Two periods of positive δ18O-shifts resulted in sea-level drops of about 60 and 40 m, respectively. The first drop in the late Langhian (middle Badenian) at c. 13.9 Ma (Mi3b) was fast and caused severe erosion on the emerged foredeep. In a second, less pronounced step around 13.0 Ma (Mi4) in the middle Serravallian (late Badenian), the base level was further deepened after a period of alternating erosion and deposition. The combined sea-level change (80–120 m) fits well with the maximum thickness of Sarmatian sediments drilled within incised valley (110 m). The global sea-level falls affected not only the geological history of the foredeep. The intensive erosion (valley incision) is combined with delta progradation in the adjacent Vienna Basin. Due to this massive sea-level drop, the interruption of marine connections resulted in vast salt deposits and faunal crises within the Central Paratethys during this time.  相似文献   
249.
Hydraulic fracturing is a method used for the production of unconventional gas resources. Huge amounts of so-called fracturing fluid (10,000–20,000 m3) are injected into a gas reservoir to create fractures in solid rock formations, upon which mobilised methane fills the pore space and the fracturing fluid is withdrawn. Hydraulic fracturing may pose a threat to groundwater resources if fracturing fluid or brine can migrate through fault zones into shallow aquifers. Diffuse methane emissions from the gas reservoir may not only contaminate shallow groundwater aquifers, but also escape into the atmosphere where methane acts as a greenhouse gas. The working group “Risks in the Geological System” as part of ExxonMobil’s hydrofracking dialogue and information dissemination processes was tasked with the assessment of possible hazards posed by migrating fluids as a result of hydraulic fracturing activities. In this work, several flow paths for fracturing fluid, brine and methane are identified and scenarios are set up to qualitatively estimate under what circumstances these fluids would leak into shallower layers. The parametrisation for potential hydraulic fracturing sites in North Rhine-Westphalia and Lower Saxony (both in Germany) is derived from literature using upper and lower bounds of hydraulic parameters. The results show that a significant fluid migration is only possible if a combination of several conservative assumptions is met by a scenario.  相似文献   
250.
A large-scale numerical flow and transport model was developed for the central-eastern arid part of the Arabian Peninsula. The model was applied to a region with freshwater resources dating back to more humid periods of the past, which are faced with overexploitation today. Model inflow was based on infiltration around wadi beds and groundwater recharge. Inflow was balanced by natural outflows, such as evaporation from sabkhas, spring discharge, and discharge to the sea. Two models were developed: (1) a short-term present-day model to estimate effective model parameters, and (2) a long-term model to study the development of the groundwater resources during the Mid- and Late Holocene and the natural response of the groundwater system to changes in climate. Hydraulic model parameters (hydraulic conductivity and specific storage) were assigned with respect to geological structures. Hydraulic parameters were estimated with an inverse PEST model by calibrating against observed depression cones cause by groundwater abstraction. Sensitivity analysis demonstrated that estimated model parameters were associated with a high uncertainty at a certain distance from agricultural areas when calibration data were lacking. A long-term model starting 10,000 years BP was calibrated by spring discharge and palaeo-groundwater levels and validated using measured 14C groundwater ages. The long-model predicted that groundwater levels adapted in response to changes in precipitation. During the Mid-Holocene, which was characterized by an intensification of the monsoon season, groundwater levels increased by 10 m on the mainland within the shallow aquifers and adapted quickly to higher recharge rates. The deeper aquifers were less affected by changes in climate. Along the present-day coastline, the groundwater level rose by about 25 m due to the declined sea level in the Mid-Holocene. During this period, surface run-off was possible as groundwater levels temporarily reached the ground surface. The natural groundwater budget reacted sensitively to changes in climate. Between 10 and 3 ka, groundwater storage occurred. During the Late Holocene, at 3 ka, natural depletion of the groundwater system began, which still prevails today.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号