首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   4篇
  国内免费   2篇
测绘学   2篇
大气科学   12篇
地球物理   60篇
地质学   98篇
海洋学   26篇
天文学   21篇
自然地理   29篇
  2023年   1篇
  2020年   4篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   6篇
  2015年   5篇
  2014年   7篇
  2013年   6篇
  2012年   7篇
  2011年   12篇
  2010年   12篇
  2009年   13篇
  2008年   11篇
  2007年   9篇
  2006年   11篇
  2005年   8篇
  2004年   13篇
  2003年   8篇
  2002年   10篇
  2001年   11篇
  2000年   3篇
  1999年   3篇
  1998年   8篇
  1997年   6篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   6篇
  1985年   4篇
  1984年   2篇
  1983年   4篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   1篇
  1968年   1篇
  1965年   1篇
  1961年   1篇
排序方式: 共有248条查询结果,搜索用时 31 毫秒
191.
Huilong  Xu  Yasue  Oki & Toshikata  Ito 《Island Arc》1998,7(4):647-659
The 1995 Northern Niigata Earthquake of magnitude (M) 5.5 occurred at the eastern margin of the Niigata seismic gap and might have been a precursor of a large destructive earthquake. The anomaly areas in temperature, electrical conductivity and Cl- concentration of groundwater were approximately coincident with the area of the seismic intensity 6 on the Japan Meteorological Agency scale, and convincingly demonstrated the presence of a buried active fault beneath the epicentral area, as was suggested by a linear distribution of seismic intensity 6. These anomalies of groundwater were created by the expulsion of geopressured hydrothermal water along an active fault. Anomalies in local groundwater and hotspring systems associated with the earthquake and the proximity of the earthquake to the Niitsu oil field led to an interpretation that the earthquake might have been triggered by activity within the geopressured hydrothermal system. The accumulation of geopressured hydrothermal water in combination with high rock temperature might reduce fracture strength of the rock, and trigger earthquake occurrence.  相似文献   
192.
Clustering stochastic point process model for flood risk analysis   总被引:7,自引:0,他引:7  
Since the introduction into flood risk analysis, the partial duration series method has gained increasing acceptance as an appealing alternative to the annual maximum series method. However, when the base flow is low, there is clustering in the flood peak or flow volume point process. In this case, the general stochastic point process model is not suitable to risk analysis. Therefore, two types of models for flood risk analysis are derived on the basis of clustering stochastic point process theory in this paper. The most remarkable characteristic of these models is that the flood risk is considered directly within the time domain. The acceptability of different models are also discussed with the combination of the flood peak counted process in twenty years at Yichang station on the Yangtze river. The result shows that the two kinds of models are suitable ones for flood risk analysis, which are more flexible compared with the traditional flood risk models derived on the basis of annual maximum series method or the general stochastic point process theory. Received: September 29, 1997  相似文献   
193.
This study is the first integrated geological and geophysical investigation of the Hidaka Collision Zone in southern Central Hokkaido, Japan, which shows complex collision tectonics with a westward vergence. The Hidaka Collision Zone consists of the Idon'nappu Belt (IB), the Poroshiri Ophiolite Belt (POB) and the Hidaka Metamorphic Belt (HMB) with the Hidaka Belt from west to east. The POB (metamorphosed ophiolites) is overthrust by the HMB (steeply eastward-dipping palaeo-arc crust) along the Hidaka Main Thrust (HMT), and in turn, thrusts over the Idon'nappu Belt (melanges) along the Hidaka Western Thrust (HWT). Seismic reflection and gravity surveys along a 20-km-long traverse across the southern Hidaka Mountains revealed hitherto unknown crustal structures of the collision zone such as listric thrusts, back thrusts, frontal thrust-and-fold structures, and duplex structures. The main findings are as follows. (1) The HMT, which dips steeply at the surface, is a listric fault dipping gently at a depth of 7 km beneath the eastern end of the HMB, and cutting across the lithological boundaries and schistosity of the Hidaka metamorphic rocks. (2) A second reflector is detected 1 km below the HMT reflector. The intervening part between these two reflectors is inferred to be the POB, which is only little exposed at the surface. This inference is supported by the high positive Bouguer anomalies along the Hidaka Mountains. (3) The shallow portion of the IB at the front of the collision zone has a number of NNE-dipping reflectors, indicative of imbricated fold-and-thrust structures. (4) Subhorizontal reflectors at a depth of 14 km are recognized intermittently at both sides of the seismic profile. These reflectors may correspond to the velocity boundary (5.9–6.6 km/s) previously obtained from seismic refraction profiling in the northern Hidaka Mountains. (5) These crustal structures as well as the back thrust found in the eastern end of the traverse represent characteristics of collisional tectonics resulting from the two collisional events since the Early Tertiary.  相似文献   
194.
ZnSiO3 clinopyroxene stable above 3 GPa transforms to ilmenite at 10–12 GPa, which further decomposes into ZnO (rock salt) plus stishovite at 20–30 GPa. The enthalpy of the clinopyroxene-ilmenite transition was measured by high-temperature solution calorimetry, giving ΔH0=51.71 ±3.18 kJ/mol at 298 K. The heat capacities of clinopyroxene and ilmenite were measured by differential scanning calorimetry at 343–733 and 343–633 K, respectively. The C p of ilmenite is 3–5% smaller than that of clinopyroxene. The entropy of transition was calculated using the measured enthalpy and the free energy calculated from the phase equilibrium data. The enthalpy, entropy and volume changes of the pyroxene-ilmenite transition in ZnSiO3 are similar in magnitude to those in MgSiO3. The present thermochemical data are used to calculate the phase boundary of the ZnSiO3 clinopyroxene-ilmenite transition. The calculated boundary,
  相似文献   
195.
Six newly developed floats, which were set to drift on the 26.7 σθ isopycnal surface and to profile temperature, salinity and pressure above 1000 dbar once a week, were deployed in the Oyashio and Kuroshio Extension (KE) in order to examine the circulation, formation site and time scale of newly formed North Pacific Intermediate Water (NPIW). The floats were deployed in February or May 2001, and the data from their deployments to December 2002 are analyzed here. Four of the six floats were deployed near the KE axis at around the first meander crest, and they moved eastward to 157°E–176°W at latitudes of 30°N–45°N. The other two floats deployed in the Oyashio water with low-potential vorticity near the south coast of Hokkaido moved southward to reach the KE front and then moved eastward to the same region as the first four floats. The temperature and salinity at 26.7 σθ measured by the profiling floats indicate that the source waters of NPIW, Oyashio and Kuroshio waters are drastically mixed and modified in the mixed water region west of 160°E. The floats were separated into the three paths east of 160°E between the Kuroshio Extension front and the north of Water-Mass front (nearly subarctic front). New NPIW is judged to be formed along these three paths since the vertical profiles of temperature and salinity are quite smooth, having a salinity minimum at about 26.7σθ along each path. Kuroshio-Oyashio isopycnal mixing ratios of the new NPIW are 7:3, 6:4 and 5:5 at 26.7σθ along the southern, middle and northern paths, respectively. Potential vorticity converges to about 14–15 × 10−11 m−1s−1 along these paths. The time scale of new NPIW formation is estimated to be 1–1.5 years from the merger of Oyashio and Kuroshio waters to the formation of the new NPIW. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
196.
The ADCP on an advanced towed fish with controllable main and tail wings, called DRAKE measured a detailed sectional structure of the Kuroshio flowing to the NE along the East China Sea shelf slope west of Okinawa. At the observation period, a countercurrent directed to the SW formed in near-bottom water on the shelf slope. The horizontal flow perpendicular to the stream axis of the Kuroshio constructed a convergence zone around the boundary between the Kuroshio and the countercurrent. An intensive upwelling with the maximum velocity of 2.8 cm s–1 was found to distribute on the shelf slope around the convergence zone. A dynamic cause of this intensive upwelling is discussed carefully.  相似文献   
197.
The Beni Suef Basin is a petroliferous rift basin straddling the River Nile containing a thick Mesozoic–Paleogene succession. The Kharita Formation is formed in the syn-rift phase of the basin formation and is subdivided into the Lower and Upper Kharita members. These two members are regarded as two third-order depositional sequences (DSQ-1 and DSQ-2). The lowstand systems tract (LST-1) of the DSQ-1 is represented by thick amalgamated sandstone bodies deposited by active braided channels. Mid-Albian tectonic subsidence led to a short-lived marine invasion which produced coastal marine and inner-shelf facies belts during an ensuing transgressive systems tract (TST-1). At the end of the mid-Albian, a phase of tectonic uplift gradually rose the continent creating a fall in relative sea level, resulting in deposition of shallow marine and estuarine facies belts during a highstand systems tract (HST-1). During the Late Albian, a new phase of land-rejuvenation commenced, with a prolonged phase of fluvial depositional. Fluvial deposits consisted of belts of amalgamated, vertically aggraded sandstones interpreted as braided and moderately sinuous channels, in the lower part of the Upper Kharita Member lowstand stage (LST-2). The continuous basin filling, coupled with significant lowering in the surrounding highlands changed the drainage regime into a wide belt of meandering river depositing the transgressive stage (TST-2). The history of the Kharita Formation finalized with a Cenomanian marine transgressive phase. Economically, the TST-1 and HST-1 play a significant role as source rocks for hydrocarbon accumulations, whereas LST-2 act as good reservoir rocks in the Early Cretaceous in the Basin.  相似文献   
198.
199.
200.
Plastic resin pellets collected from remote islands in the Pacific, Atlantic, and Indian Oceans and the Caribbean Sea were analyzed for polychlorinated biphenyls (PCBs), dichloro-diphenyltrichloroethane and its degradation products (DDTs), and hexachlorocyclohexanes (HCHs). Concentrations of PCBs (sum of 13 congeners) in the pellets were 0.1-9.9 ng/g-pellet. These were 1-3 orders of magnitude smaller than those observed in pellets from industrialized coastal shores. Concentrations of DDTs in the pellets were 0.8-4.1 ng/g-pellet. HCH concentrations were 0.6-1.7 ng/g-pellet, except for 19.3 ng/g-pellet on St. Helena, where current use of lindane is likely influence. This study provides background levels of POPs (PCBs<10 ng/g-pellet, DDTs <4 ng/g-pellet, HCHs <2 ng/g-pellet) for International Pellet Watch. Sporadic large concentrations of POPs were found in some pellet samples from remote islands and should be considered in future assessments of pollutants on plastic debris.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号