首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   7篇
  国内免费   5篇
测绘学   4篇
大气科学   18篇
地球物理   75篇
地质学   64篇
海洋学   56篇
天文学   32篇
综合类   6篇
自然地理   24篇
  2024年   1篇
  2021年   2篇
  2020年   4篇
  2019年   7篇
  2018年   8篇
  2017年   5篇
  2016年   19篇
  2015年   7篇
  2014年   6篇
  2013年   15篇
  2012年   6篇
  2011年   12篇
  2010年   9篇
  2009年   16篇
  2008年   27篇
  2007年   14篇
  2006年   22篇
  2005年   13篇
  2004年   8篇
  2003年   6篇
  2002年   7篇
  2001年   12篇
  2000年   5篇
  1999年   4篇
  1998年   11篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1983年   2篇
  1982年   1篇
  1976年   1篇
排序方式: 共有279条查询结果,搜索用时 15 毫秒
21.
Abstract— Mid‐infrared absorption spectra for all types of carbonaceous chondrites were obtained in this study to establish a versatile method for spectroscopic classification of carbonaceous chondrites. Infrared spectra were measured using a conventional KBr pellet method and diamond press method. Spectra of hydrous carbonaceous chondrites exhibit intense O‐H stretching vibrations. CI chondrites are identifiable by a characteristic sharp absorption band appearing at 3685 cm?1, which is mainly attributable to serpentine. X‐ray diffraction analysis showed the presence of serpentine. However, Yamato (Y‐) 82162 (C1) does not have the band at 3685 cm?1 because of its thermal metamorphism. CM and CR chondrites have an intense absorption band at approximately 3600 cm?1. This absorption tends to appear in CM chondrites more strongly than CR chondrites because the intensity ratios of an OH stretching mode at 3520 cm?1 compared to 3400 cm?1 for CM chondrites are in the range of 0.95–1.04, which is systematically higher than those of CR chondrites (0.86–0.88). Therefore, the two types of chondrites are distinguishable by their respective infrared spectra. The spectrum feature of the Tagish Lake meteorite is attributable to neither CI nor CM chondrites. CO chondrites are characterized by weak and broad absorption at 3400 cm?1. CV chondrites have weak or negligible absorption of water. CK chondrites also have no water‐induced absorption. CH and CB chondrites have a sharp absorption at 3692 cm?1 indicating the presence of chrysotile, which is also supported by observations of X‐ray diffraction and TEM. The combination of spectroscopic classification and the diamond press method allows classification of carbonaceous chondrites of very valuable samples with small quantities. As one example, carbonaceous chondrite clasts in brecciated meteorites were classified using our technique. Infrared spectra for a fragment of carbonaceous clasts (<1 μg) separated from Willard (b) and Tsukuba were measured. The 3685 cm?1 band found in CI chondrites was clearly detected in the clasts, indicating that they are CI‐like clasts.  相似文献   
22.
Abstract— Chemical structures of the insoluble organic matter (IOM) from the Antarctic CM2 chondrites (Yamato [Y‐] 791198, 793321; Belgica [B‐] 7904; Asuka [A‐] 881280, 881334) and the Murchison meteorite were analyzed by solid‐state 13C nuclear magnetic resonance (NMR) spectroscopy. Different types of carbons were characterized, such as aliphatic carbon (Ali‐C), aliphatic carbon linked to hetero atom (Hetero‐Ali‐C), aromatic carbon (Aro‐C), carboxyls (COOR), and carbonyls (C=O). The spectra of the IOM from Murchison and Y‐791198 showed two major peaks: Ali‐C and Aro‐C, while the spectra from the other meteorites showed only one major peak of Aro‐C. Carbon distribution was determined both by manual integration and deconvolution. For most IOM, the Aro‐C was the most abundant (49.8–67.8%) of all carbon types. When the ratios of Ali‐C to Aro‐C (Ali/Aro) were plotted with the atomic hydrogen to carbon ratio (H/C), a correlation was observed. If we use the H/C as a parameter for the thermal alteration event on the meteorite parent body, this result shows a different extent of thermal alteration. In addition, IOM with a lower Ali/Aro showed a lower ratio of Ali‐C to COOR plus C=O (Ali / (COOR + C=O)). This result suggests that the ratio of CO moieties to aliphatic carbon in IOM might reflect chemical oxidation that was involved in hydrothermal alteration.  相似文献   
23.
The Sunyaev–Zel'dovich (SZ) effect and the Faraday rotation from haloes are examined over a wide mass range, including gas condensation and magnetic field evolution. Contributions to the cosmic microwave background (CMB) angular power spectrum are evaluated for galaxy clusters, galaxy groups and galaxies. Smaller mass haloes are found to play a more important role than massive haloes for the B -mode polarization associated with the SZ CMB anisotropies. The B modes from the Faraday rotation dominate the secondary B modes caused by gravitational lensing at  ℓ > 3000  . Measurement of B -mode polarization in combination with the SZ power spectrum can potentially provide important constraints on intracluster magnetic field and gas evolution at early epochs.  相似文献   
24.
The cosmic microwave background (CMB) polarization and the 21-cm line fluctuations are powerful probes of cosmological reionization. We study how the cross-correlation between the CMB polarization ( E modes) and the 21-cm line fluctuations can be used to gain further understanding of the reionization history, within the framework of inhomogeneous reionization. Since the E -mode polarization reflects the amplitude of the quadrupole component of the CMB temperature fluctuations, the angular power spectrum of the cross-correlation exhibits oscillations at all multipoles. The first peak of the power spectrum appears at the scale corresponding to the quadrupole at the redshift, which is probed by the 21-cm line fluctuations. The peak reaches its maximum value in redshift when the average ionization fraction of the universe is about half. On the other hand, on small scales, there is a damping that depends on the duration of reionization. Thus, the cross-correlation between the CMB polarization and the 21-cm line fluctuations has the potential to accurately constrain the epoch and the duration of reionization.  相似文献   
25.
We investigate the effect of modified gravity on cluster abundance and the Sunyaev–Zel'dovich (SZ) angular power spectrum. Our modified gravity is based on a phenomenological extension of the Dvali–Gabadadze–Porrati model which includes two free parameters characterizing deviation from Λ cold dark matter cosmology. Assuming that Birkhoff's theorem gives a reasonable approximation, we study the spherical collapse model of structure formation and show that while the growth function changes to some extent, modified gravity gives rise to no significant change in the linear density contrast at collapse time. The growth function is enhanced in the so called normal branch, while in the 'self-accelerating' branch it is suppressed. The SZ angular power spectrum is computed in the normal branch, which allows us to put observational constraints on the parameters of the modified gravity model using small scale cosmic microwave background observation data.  相似文献   
26.
In situ strength measurements on natural upper-mantle minerals   总被引:1,自引:0,他引:1  
Using in situ strength measurements at pressures up to 10 GPa and at room temperature, 400, 600, and 700°C, we examined rheological properties of olivine, orthopyroxene, and chromian-spinel contained in a mantle-derived xenolith. Mineral strengths were estimated using widths of X-ray diffraction peaks as a function of pressure, temperature, and time. Differential stresses of all minerals increase with increasing pressure, but they decrease with increasing temperature because of elastic strain on compression and stress relaxation during heating. During compression at room temperature, all minerals deform plastically at differential stress of 4–6 GPa. During subsequent heating, thermally induced yielding is observed in olivine at 600°C. Neither orthopyroxene nor spinel shows complete stress relaxation, but both retain some stress even at 700°C. The strength of the minerals decreases in the order of chromian-spinel ≈ orthopyroxene > olivine for these conditions. This order of strength is consistent with the residual pressure of fluid inclusions in mantle xenoliths.  相似文献   
27.
Two sandy sediment cores (Cores D227-120 and D380) were collected from inside a deep-sea giant clam (Calyptogena soyoae) community off Hatsushima Island, western Sagami Bay, central Japan (35°59.9′N, 139°13.6′E; 1160 m deep) and a muddy sediment core (Core D227-202) was obtained from outside the community by the submersibleShinkai 2000. The chloride concentration of the pore waters is constant vertically and sulfate reduction using sedimentary organic matter occurs in Core D227-202 (21 cm long). The chloride concentrations are lower by 7% at the 7.5–9 cm depth in Core D227-120 (9 cm long) and by 3% at the 11–12 cm depth in Core D380 (16 cm long) than those of the overlying bottom waters in the cores from inside of the community. Sulfate concentration decreases remarkably and dissolved inorganic carbon, alkalinity, ammonium-N, and hydrogen sulfide concentrations increase significantly with increasing depth in Core D380.δ34S values of sulfate ions increase from +20.5 to +35.3‰ andδ13C values of dissolved inorganic carbon decrease drastically from −7.0 to −45‰ with increasing depth from the top to the bottom of the core, although theδ13C values of the organic carbon of the sediments are−23.7 ± 0.9‰ in Core D380. These results indicate that sulfate reduction using methane is active within the sediments just beneath the living clams and that the hydrogen sulfide produced can be used by endosymbiotic sulfur oxidizing bacteria living in the gills ofC. soyoae in the community.  相似文献   
28.
Before the Kobe earthquake, an anomalous increase in atmospheric Rn concentration was observed. By separating the measured concentration of atmospheric Rn into three components according to the distance from the monitoring station, the variation of Rn exhalation rate can be estimated for the respective area using the daily minimum and maximum concentrations. The mean rate of Rn exhalation gradually increased in an area of 20 km around the monitoring station, becoming five times higher than normal in the period between October 1994 and the date of the earthquake. This area had a large co-seismic displacement of up to 30 cm, which roughly corresponds to the crustal strain of 10−6-order, and it is considered the main source for the atmospheric Rn prior to the Kobe earthquake. Analyses revealed that the pre-seismic change in the atmospheric Rn concentration exhibited an anomalous pattern which would yield information on the spatial distribution of the mechanical response of the ground.  相似文献   
29.
Devolatilization reactions during prograde metamorphism are a key control on the fluid distribution within subduction zones. Garnets in Mn-rich quartz schist within the Sanbagawa metamorphic belt of Japan are characterized by skeletal structures containing abundant quartz inclusions. Each quartz inclusion was angular-shaped, and showed random crystallographic orientations, suggesting that these quartz inclusions were trapped via grain boundary cracking during garnet growth. Such skeletal garnet within the quartz schist formed related to decarbonation reactions with a positive total volume change (?V t > 0), whereas the euhedral garnet within the pelitic schists formed as a result of dehydration reaction with negative ?V t values. Coupled hydrological–chemical–mechanical processes during metamorphic devolatilization reactions were investigated by a distinct element method (DEM) numerical simulation on a foliated rock that contained reactive minerals and non-reactive matrix minerals. Negative ?V t reactions cause a decrease in fluid pressure and do not produce fractures within the matrix. In contrast, a fluid pressure increase by positive ?V t reactions results in hydrofracturing of the matrix. This fracturing preferentially occurs along grain boundaries and causes episodic fluid pulses associated with the development of the fracture network. The precipitation of garnet within grain boundary fractures could explain the formation of the skeletal garnet. Our DEM model also suggests a strong influence of reaction-induced fracturing on anisotropic fluid flow, meaning that dominant fluid flow directions could easily change in response to changes in stress configuration and the magnitude of differential stress during prograde metamorphism within a subduction zone.  相似文献   
30.
Bodies located in outdoor environments are radiatively heated in the daytime and cooled at night. Convective heat transfer is subsequently activated between the body surface and the surrounding air. To investigate these heat-exchange processes, we developed a new apparatus, referred to as a “polyethylene chamber”, for use in physical model experiments. The chamber is a 1.51-m-long tube with the ends serving as the air inlet and outlet, and is ventilated in the longitudinal direction by using an exhaust fan. The measurement section of the chamber is open but otherwise the device is covered with 0.02-mm-thick polyethylene film. Because such thin polyethylene film transmits approximately 85 % of both shortwave and longwave radiation, the model surface in the chamber is exposed to a radiation level almost equivalent to the outdoor radiation level. For example, at night the surface of the model is cooled by radiation, and subsequently, the air inside the chamber is cooled by the surface. Consequently, the outlet air temperature becomes lower than the inlet air temperature. The use of this temperature difference between the air inlet and outlet, together with other heat balance components, is a unique approach to the chamber technique for evaluating the heat exchange rate at a model’s surface. This report describes the design and heat balance of the chamber, and compares the heat-balance-based approach with another approach based on the radiation–convection balance on the model surface. To demonstrate the performance of the polyethylene chamber, two chambers were exposed to outdoor radiation on a clear night; one contained a leaf model. Air and surface temperatures were measured and the convective heat flux at the surfaces of the model and floor surface were calculated from the heat balance components of the chambers by assuming steady-state heat transfer. The fluxes agreed closely with those obtained from the radiation–convection balance at the model or floor surface. The results also clearly showed that the air flowing in the polyethylene chamber was cooled more efficiently when the model surface was installed in the chamber, even though the model surface temperature was high.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号