首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   788篇
  免费   18篇
  国内免费   18篇
测绘学   7篇
大气科学   45篇
地球物理   181篇
地质学   190篇
海洋学   236篇
天文学   120篇
综合类   4篇
自然地理   41篇
  2022年   2篇
  2021年   7篇
  2020年   7篇
  2019年   8篇
  2018年   10篇
  2017年   12篇
  2016年   20篇
  2015年   11篇
  2014年   18篇
  2013年   27篇
  2012年   23篇
  2011年   34篇
  2010年   32篇
  2009年   39篇
  2008年   36篇
  2007年   42篇
  2006年   50篇
  2005年   39篇
  2004年   55篇
  2003年   27篇
  2002年   24篇
  2001年   27篇
  2000年   17篇
  1999年   8篇
  1998年   22篇
  1997年   10篇
  1996年   17篇
  1995年   11篇
  1994年   11篇
  1993年   7篇
  1992年   8篇
  1991年   6篇
  1990年   13篇
  1989年   7篇
  1988年   11篇
  1987年   12篇
  1986年   11篇
  1985年   7篇
  1984年   19篇
  1983年   11篇
  1982年   11篇
  1981年   5篇
  1980年   4篇
  1979年   8篇
  1978年   8篇
  1977年   9篇
  1976年   3篇
  1975年   2篇
  1974年   3篇
  1973年   8篇
排序方式: 共有824条查询结果,搜索用时 15 毫秒
41.
The rates of chemical reactions between aqueous sulfates and sulfides are essentially identical to sulfur isotopic exchange rates between them, because both the chemical and isotopic reactions involve simultaneous oxidation of sulfide-sulfur atoms and reduction of sulfate-sulfur. The rate of reaction can be expressed as a second order rate law: R = k·[∑SO42?]·[∑S2?], where R is the overall rate, k is the rate constant and [∑SO42?] and [∑S2?] are molal concentrations. We have computed the rate constants from the available experimental data on the partial exchange of sulfur isotopes between aqueous sulfates and sulfides using the rate law established by us: ln(αe ? ααe ? α0) = ? kt([∑SO42?] + [∑S2?]), where t is time and α0, α, and αe are, respectively, the fractionation factors at t = 0 (the initial condition), at the end of experiment, and at equilibrium. The equilibrium fractionation factor can be expressed as: 1000 ln αe = 6.463 × 106T2 + 0.56 (±.5) (T in Kelvin).The rate constants are strongly dependent on T and pH, but not in as simple a manner as suggested by Igumnov (1976). Our rate constants in Na-bearing hydrothermal solutions decrease by 1 order of magnitude with an increase in pH by 1 unit at pH's less than ~3, remain constant in the pH range of ~4 to ~7, and again decrease at pH >7. The activation energy for the reaction also depends on pH: 18.4 ± 1 kcal/mole at pH = 2, 29.6 ± 1 kcal/mole at pH = 4 to 7, and between 40 and 47 kcal/mole at pH around 9. The observed pH dependence of the rate constant and of the activation energy can be best explained by a model involving thiosulfate molecules as reaction intermediates, in which the intramolecular exchange of sulfur atoms in thiosulfates becomes the rate determining step.The rate constants obtained in this study were used to compute the changes in the isotopic fractionation factors between aqueous sulfates and sulfides during cooling of fluids. Comparisons with data of coexisting sulfate-sulfide minerals in hydrothermal deposits, suggest that simple cooling was not a likely mechanism for coprecipitation of sulfate and sulfide minerals at temperatures below 350°C. Mixing of sulfide-rich solutions with sulfate-rich solutions at or near the depositional sites is a more reasonable process for explaining the observed fractionation.The degree of attainment of chemical equilibrium between aqueous sulfates and sulfides in a hydrothermal system, and the applicability of aO2-pH type diagrams to mineral deposits, depends on the ∑S content and the thermal history of the fluid, which in turn is controlled by the flow rate and the thermal gradient in the system.The rates of sulfate reduction by non-bacterial processes involving a variety of reductants are also dependent on T, pH, [∑SO42?], and [∑S2?], and appear to be fast enough to become geochemically important at temperatures above about 200°C.  相似文献   
42.
Concentrations of the REE, Sc, Co, Fe, Zn, Ir, Na and Cr were determined by instrumental neutron activation and mass spectrometric isotope dilution analysis for mineral separates of the coarseand fine-grained types (group I and II of Martin and Mason's classification) of the Allende inclusions.These data, combined with data on mineral/liquid partition coefficients, oxygen isotope distributions and diffusion calculations, suggest the following: (1) Minerals in the coarse-grained inclusions (group I) crystallized in a closed system with respect to refractory elements. On the other hand, differences in oxygen isotope distributions among minerals preclude a totally molten stage in the history of the inclusion. Group I inclusions were formed by rapid condensation (either to liquid or solid) in a supercooled solar nebula; extrasolar pyroxene and spinel dust were included but not melted in the condensing inclusions, thus preserving their extrasolar oxygen isotope composition. REE were distributed by diffusion during the subsequent heating at subsolidus temperatures; because oxygen diffuses much more slowly at these temperatures, the oxygen isotope anomalies were preserved. (2) The fine-grained (group II) inclusions were also formed by condensation from a super-cooled nebular gas; however, REE-rich clinopyroxene and spinel were formed early and REE-poor sodalite and nepheline were formed later and mechanically mixed with clinopyroxene and spinel to form the inclusions. The REE patterns of the bulk inclusions and the mineral separates are fractionated, indicating that REE abundances in the gaseous phase were already fractionated at the time of condensation of the minerals. (3) Pre-existing Mg isotope anomalies in the coarse-grained inclusions must have been erased during the heating stage thus resetting the 26Al-26Mg chronometer.  相似文献   
43.
We have undertaken petrologic and SHRIMP U-Th-Pb isotopic studies on zircons from basaltic eucrites (Yamato [Y]-75011, Y-792510, Asuka [A]-881388, A-881467 and Padvarninkai) with different thermal and shock histories. Eucritic zircons are associated with ilmenite in most cases and have subhedral shapes in unmetamorphosed and metamorphosed eucrites. Some zircons in highly metamorphosed eucrites with granulitic texture occur alone in pyroxene, and typically have rounded to subrounded shapes due to recrystallization. Superchondritic Zr/Hf ratios of eucritic zircons indicate that they crystallized from incompatible element-rich melts after crystallization of ilmenite. Concentrations of uranium and thorium in zircons in the unmetamorphosed eucrite Y-75011 are higher than those in metamorphosed eucrites.The U-Pb systems of eucritic zircons are almost concordant but some zircon grains show reverse discordance. Radiogenic lead-loss up to 48% from zircons is observed in the shock-melted eucrite Padvarninkai. The 207Pb-206Pb ages of zircon in Y-75011 (4550 ± 9 Ma, n = 5) are nearly identical, within analytical uncertainty, to the ages of zircons from the metamorphosed eucrite Y-792510 (4545 ± 15 Ma, n = 13), the highly metamorphosed eucrites A-881388 (4555 ± 54 Ma, n = 5) and A-881467 (4558 ± 13 Ma, n = 8), and the shock-melted eucrite Padvarninkai (4555 ± 13 Ma, n = 18). The averaged 207Pb-206Pb age of zircon from five eucrites analyzed in this study is 4554 ± 7 Ma (95% confidence limits, n = 49), indistinguishable from the averaged U-Pb age (4552 ± 9 Ma) of the same samples. Because of the high closure temperature of lead in zircon (Tclosure = ∼1050°C with a cooling rate of 0.2°C/yr), the 207Pb-206Pb ages of eucritic zircon do not represent metamorphic ages but crystallization ages of extrusive lavas.This fact strongly suggests that volcanism of the eucrite parent body occurred at a very early stage of the Solar System history, 7-20 Ma after CAI formation (4567.2 ± 0.6 Ma), thus basaltic eucrites crystallized from parental magmas within a short interval following the differentiation of their parent body. The U-Pb ages of eucritic zircons are older than the U-Pb, Sm-Nd and Rb-Sr ages of some basaltic eucrites, which is consistent with differences in closure temperatures of each isotopic system, and suggests that thermal and shock metamorphism affected the isotopic systems of pyroxene, plagioclase and phosphates.  相似文献   
44.
Four vertical profiles of the concentration and isotopic composition of Nd in seawater were obtained in the western North Pacific. Two profiles from the Kuroshio Current regime showed congruently that although the Nd concentration increases gradually with depth, its isotopic composition varies significantly with depth depending upon the water mass occupying the water column. The high-salinity Kuroshio waters originating from the North Pacific Tropical Water (NPTW) carry the least radiogenic Nd (?Nd = −7.4 to −8.7) to this region at ∼250 m from the western margin continental shelves, most likely from the East China Sea. The Nd isotopic compositions in the North Pacific Intermediate Water (NPIW) that occurs at 600 to 1000 m in the subtropical region are fairly uniform at ?Nd = −3.7. The profile data from the ∼38° to 40°N Kuroshio/Oyashio mixed water region off Sanriku of Honshu, Japan, also suggest that the newest NPIW with ?Nd = −3.2 is formed there by the mixing of various source waters, and the radiogenic component of Nd is derived mainly from the Oyashio waters.In the Pacific Deep Water (PDW) below ∼1000 m, the Nd isotopic composition is neither vertically nor horizontally homogeneous, suggesting that it serves as a useful tracer for sluggish deep water circulation as well. Two profiles from the Izu-Ogasawara Trench showed a minimum ?Nd value at ∼2000 m, suggesting that there exists a horizontal advective flow in the vicinity of Honshu, Japan. There is some evidence from other chemical properties to support this observation. The waters below 4000 m including those within the trench in the subtropical region have ?Nd values of around −5, suggesting that the deep waters are fed from the south along the western boundary, ultimately from the Antarctic Bottom Water (AABW) in the South Pacific. This extends up to ∼40°N along the Japanese Islands. In the subarctic region (>∼42°N), the waters have more radiogenic Nd with ?Nd > −4.0 throughout the water column, presumably due to the supply of Nd by weathering in such igneous provinces as the Kuril-Kamchatska-Aleutian Island chain. The lateral inhomogeneity of the Nd isotopic composition in PDW suggests that there may be different circulation and mixing regimes in the North Pacific Basin.  相似文献   
45.
The Eoarchaean (>3,600 Ma) Itsaq Gneiss Complex of southern West Greenland is dominated by polyphase orthogneisses with a complex Archaean tectonothermal history. Some of the orthogneisses have c. 3,850 Ma zircons, and they vary from rare single phase metatonalites to more common complexly banded migmatites. This is due to heterogeneous strain, in situ anatexis and granitic veining superimposed during younger tectonothermal events. In the single-phase tonalites with c. 3,850 Ma zircon, oscillatory-zoned prismatic zircon is all 3,850 Ma old, but shows patchy ancient loss of radiogenic Pb. SHRIMP spot analyses and laser ablation ICP-MS depth profiling show that thin (usually < 10 μm) younger (3,660–3,590 Ma and Neoarchaean) shells of lower Th/U metamorphic zircon are present on these 3,850 Ma zircons. Several samples with this simple zircon population occur on islands near Akilia. In contrast, migmatites usually contain more complex zircon populations, with often more than one generation of igneous zircon present. Additional zircon dating of banded gneisses across the Complex shows that samples with c. 3,850 Ma igneous zircon are not just a phenomenon restricted to Akilia and adjacent islands. For example, migmatites from Itilleq (c. 65 km from Akilia) contain variable amounts of oscillatory-zoned 3,850 Ma and 3,650 Ma zircon, interpreted, respectively, as the rock age and the time of crustal melting under Eoarchaean metamorphism. With only 110–140 ppm Zr in the tonalites and likely magmatic temperatures of >850°C, zircon solubility–melt composition relationships show that they were only one-third saturated in zircon. Any zircon entrained in the precursor magmas would thus have been highly soluble. Combined with the cathodoluminesence imaging, this demonstrates that the c. 3,850 Ma oscillatory zoned zircon crystallised out of the melt and hence gives a magmatic age. Thus the rare well-preserved tonalites and palaeosome in migmatites testify that c. 3,850 Ma quartzo–feldspathic rocks are a widespread (but probably minor) component in the Itsaq Gneiss Complex. C. 3,850 Ma zircon with negative Eu anomalies (showing growth in felsic systems) also occurs as detrital grains in rare c. 3,800 Ma metaquartzites and as inherited grains in some 3,660 Ma granites (sensu stricto). These demonstrate that still more c. 3,850 Ma rocks were present, but were recycled into Eoarchaean sediments and crustally derived granites. The major and trace element characteristics (e.g. LREE enrichment, HREE depletion, low MgO) of the best-preserved c. 3,850 Ma rocks are typical of Archaean TTG suites, and thus argue for crust formation processes involving important contributions from melting of hydrated mafic crust to the earliest Archaean. Five c. 3,850 Ma tonalites were selected as the best preserved on the basis of field criteria and zircon petrology. Four of these samples have overlapping initial ɛNd (3,850 Ma) values from +2.9 to +3.6± 0.5, with the fourth having a slightly lower value of +0.6. These data provide additional evidence for a markedly LREE-depleted early terrestrial mantle reservoir. The role of c. 3,850 Ma crust should be considered in interpreting isotope signatures of the younger (3,800–3,600 Ma) rocks of the Itsaq Gneiss Complex. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
46.
Partition coefficients between olivine and melt at upper mantle conditions, 3 to 14 GPa, have been determined for 27 trace elements (Li, Be, B, Na, Mg, Al, Si, P, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Rb, Sr, Y, Zr, Cs, Ba, La and Ce) using secondary-ion mass-spectrometry (SIMS) and electron-probe microanalysis (EPMA). The general pattern of olivine/melt partitioning on Onuma diagrams resembles those reported previously for natural systems. This agreement strongly supports the argument that partitioning is under structural control of olivine even at high pressure. The partition coefficients for mono- and tri-valent cations show significant pressure dependence, both becoming larger with pressure, and are strongly correlated with coupled substitution into cation sites in the olivine structure. The dominant type of trace element substitution for mono- and tri-valent cations into olivine changes gradually from (Si, Mg)↔(Al, Cr) at low pressure to (Si, Mg)↔(Al, Al) and (Mg, Mg)↔(Na, Al) at high pressure. The change in substitution type results in an increase in partition coefficients of Al and Na with pressure. An inverse correlation between the partition coefficients for divalent cations and pressure has been observed, especially for Ni, Co and Fe. The order of decreasing rate of partition coefficient with pressure correlates to strength of crystal field effect of the cation. The pressure dependence of olivine/melt partitioning can be attributed to the compression of cation polyhedra induced by pressure and the compensation of electrostatic valence by cation substitution. Received: March 6, 1997 / Revised, accepted: March 12, 1998  相似文献   
47.
This paper presents results of observation and analysis of the response of one of the longest cable-stayed bridges in the world to the Hyogoken–Nanbu (Kobe) Earthquake of 17 January 1995. It is determined that interaction of the foundations of the bridge towers with the supporting soil plays a decisive role in the overall structural behaviour. The key factor governing the changes of the soil properties at this site is pore-water pressure buildup, which results in liquefaction of the saturated surface soil layers under large dynamic loads. Models of the soil and structure are created and initially validated by accurately simulating the system response to a small earthquake. Soil parameters reflecting the pore-water pressure buildup in the strong earthquake are determined by an advanced non-linear effective stress analysis, combining the Ramberg–Osgood model of stress–strain dependence with a pore pressure model based on shear work concept. They are utilized to investigate and simulate the interaction of the foundation and the supporting soil using the program SASSI with the flexible volume substructuring approach. The results show a good agreement with the observations and have useful implications to the scientific and engineering practice. © 1998 John Wiley & Sons, Ltd.  相似文献   
48.
Nitrite oxidation in the tropospheric aqueous phase by freezing was evaluated by freezing a field sample. Nitrite oxidation by dissolved oxygen in the freezing process is much faster than by other oxidation processes, such as reactions with ozone, hydrogen peroxide or dissolved oxygen in an aqueous solution at pHs 3 to –6. At pH 4.5 and 25°C, the lifetime of nitrite in the aqueous phase is ca. 1 hr in oxidation by ozone (6×10-10 mol dm-3), ca. 10 hr in oxidation by H2O2 (2×10-4 mol dm-3), and 7.5 hr (Fischer and Warneck, 1996) in photodissociation at midday in summer. Under the same conditions at a temperature below 0°C, the lifetime of nitrite in the freezing process is estimated as ca. 2 sec when the droplets are frozen within a second. The reaction by freezing is affected by the presence of salts, such as NaCl or KCl, or orgnaic compounds, such as methanol or acetone. The results of freezing a field rain or fog sample showed that nitrite oxidation proceeds below pH 6, and the conversion ratio of nitrate from nitrite increases with decreasing pH. The oxidation of nitrite by freezing was also observed in freezing fog particles generated by an ultrasonic humidifier. The ratios of the concentrations of ions in the winter sample to those in the summer sample (or those in the fog sample) were almost the same values. However, the concentration of nitrite in the winter sample was lower than that estimated by the ratios of other ions. From the present study, it seems that the freezing process plays an important role in the nitrite sink process in the tropospheric aqueous phase.  相似文献   
49.
Seasonal variations of the spectra of wind speed and air temperature in the mesoscale frequency range from 1.3 × 10-4 to 1.5 × 10-3 Hz (10 min to 2 h periods) have been studied through observations over land for one year. Spectrographs [time series of isopleths of spectral densities, f · S(f) vs f] of wind speed and air temperature contain occasional peaks that are attributed to short-lived mesoscale atmospheric activity with narrow frequency bands. Significant spectral peaks of wind speed were found in 19% of the total observations in winter, and in 15–16% in the other seasons; for air temperature, they occured in 12% of observations in autumn, and in 16–19% in the other seasons. The peaks most often occurred in the period range from 30 min to 1 h; most had durations less than 24 h. Mesoscale fluctuations of wind speed and air temperature were highly correlated, and in most cases, phase differences were 90–180 ° with air temperature leading wind speed. Significant spectral peaks of wind speed often occurred during northerly seasonal cold winds in winter, and accompanied tropical and/or mid-latitude cyclones in the other seasons. When the peaks occurred, wind speed was usually relatively high and the atmospheric surface layer was unstable.  相似文献   
50.
A photochemical box model is used to simulate seasonal variations in concentrations of sulfur compounds at latitude 40° S. It is assumed that the hydroxyl radical (OH) addition reaction to sulfur in the dimethyl sulfide (DMS) molecule is the predominant pathway for methanesulfonic acid (MSA) production, and that the rate constant increases as the air temperature decreases. Concentration of the nitrate radical (NO3) is a function of the DMS flux, because the reaction of DMS with NO3 is the most important loss mechanism of NO3. While the diurnally averaged concentration of OH in winter is a factor of about 8 smaller than in summer, due to the weak photolysis process, the diurnally averaged concentration of NO3 in winter is a factor of about 4–5 larger than in summer, due to the decrease of DMS flux. Therefore, at middle and high latitudes in winter, atmospheric DMS is mainly oxidized by the reaction with NO3. The calculated ratio of the MSA to SO2 production rates is smaller in winter than in summer, and the MSA to non-sea-salt sulfate (nssSO4 2-) molar ratio varies seasonally. This result agrees with data on the seasonal variation of the MSA/nssSO4 2- molar ratio obtained at middle and high latitudes. The calculations indicate that during winter the reaction of DMS with NO3 is likely to be a more important sink of NOx (NO+NO2) than the reaction of NO2 with OH, and to serve as a significant pathway of the HNO3 production. If dimethyl sulfoxide (DMSO) is produced through the OH addition reaction and is heterogeneously oxidized in aqueous solutions, half of the nssSO4 2- produced in summer may be through the oxidation process of DMSO. It is necessary to further investigate the oxidation products by the reaction of DMS with OH, and the possibility of the reaction of DMS with NO3 during winter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号