首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   5篇
  国内免费   5篇
测绘学   4篇
大气科学   8篇
地球物理   75篇
地质学   42篇
海洋学   21篇
天文学   22篇
综合类   6篇
自然地理   19篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2018年   4篇
  2017年   5篇
  2016年   6篇
  2015年   6篇
  2014年   8篇
  2013年   1篇
  2012年   6篇
  2011年   6篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   5篇
  2006年   9篇
  2005年   6篇
  2004年   5篇
  2003年   7篇
  2002年   3篇
  2001年   5篇
  2000年   13篇
  1999年   10篇
  1998年   5篇
  1996年   1篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   5篇
  1985年   4篇
  1984年   2篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   4篇
  1976年   7篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
排序方式: 共有197条查询结果,搜索用时 10 毫秒
61.
62.
We developed an objective method to define the aftershock areas of large earthquakes as a function of time after the main shock. The definition is based upon the amount of energy released by aftershocks, the spatial distribution of the energy release is first determined and is contoured. The 1-day aftershock area is defined by a contour line corresponding to the energy release level of 1015.6 ergs/(100 km2 · day). The 10-day, 100-day and 1-y aftershock areas are similarly defined by contour lines corresponding to 1014.8, 1014.0, and 1013.5 ergs/(100 km2 · day), respectively. We also define the expansion ratios at time t by the ratio of the aftershock area at t to that at 1 day.Using this method we study the aftershock area expansion patterns of 44 large (Ms ? 7.5) and five moderate shallow earthquakes which occurred from 1963 to 1980. Each aftershock sequence is examined at four different times, i.e., 1 day, 10 days, 100 days, and 1 y after the main event. We define the aftershock area expansion ratios η and ηe by S(100)/S(1) and L(100)/L(1), respectively: here S(t) and L(t) are the area and the length of the aftershock area, respectively, at time t. Our study suggests that a distinct regional variation of aftershock area expansion patterns is present; it is strongly correlated with the tectonic environment. In general, the subduction zones of the “Mariana” type have large expansion ratios, and those of the “Chilean” type have small expansion ratios. Some earthquakes that occurred in the areas of complex bathymetry such as aseismic ridges tend to have large expansion ratios.These results can be explained in terms of an asperity model of fault zones in which a fault plane is represented by a distribution of strong spots, called the asperities, and weak zones surrounding the asperities. The rupture immediately after the main shock mostly involves asperities. After the main rupture is completed, the stress change caused by the main shock gradually propagates outward into the surrounding weak zones. This stress propagation manifests itself as expansion of aftershock activity. In this simple picture, if the fault zone is represented by relatively large asperities separated by small weak zones (“Chilean” type), then little expansion of aftershock activity would be expected. On the other hand, if relatively small asperities are sparsely distributed (“Mariana” type), significant expansion occurs. The actual distribution of asperities is likely to be more complex than the two cases described above. However, we would expect that the expansion ratio is in general proportional to the spatial ratio of the total asperity area to the fault area.  相似文献   
63.
A simple statistical approach has been applied to the repeated electro-optical distance measurements (EDM) of 1,358 lines in the Tohoku district of Japan to obtain knowledge about the precision of EDM and the possible accumulation of strain. The average time interval between measurements is about seven or eight years. It is shown that the whole data of the difference between distance measurements repeated over a given lineD are interpreted in terms of EDM errors comprising distance proportional systematic errors and standard errors expressed by the usual form . The rate of horizontal deformation must therefore be much smaller than the strain rates of about 0.7 0.8 ppm over 7 to 8 years which have been hitherto expected.  相似文献   
64.
Geostructural setting, as well as mineral and isotopic compositions, of separate apatite deposits and occurrences in the Aldan Shield composed of Precambrian metasedimentary apatite–carbonate rocks are considered. In terms of carbon and oxygen isotopic compositions, they differ from other carbonate rocks of the Aldan Shield, including carbonatites and Ca–Mg metasomatites, and resemble Phanerozoic and Precambrian metasedimentary carbonates. They formed in oxidizing conditions. The contribution of evaporite processes at different stages of their formation is supported by the carbonate enrichment in 13C and the presence of sulfates. It was established that apatite–carbonate rocks represent the product of complex alternation of sedimentary processes at different values of salinity in the basins occasionally characterized by the decomposition of older sediments under subaerial conditions.  相似文献   
65.
66.
A biological community was discovered in the Northern Okushiri Ridge, northeastern Japan Sea. The community was closely associated with sea-floor fissures, and presumed to be supported by methanotrophic and/or thiotrophic bacterial production. Sediments inside of and in the vicinity of the fissures were collected, and the short-chain (C9–20) sediment fatty acids were analyzed for amounts and compositions. The fatty acid compositions were compared with those from a known methane seep and a submarine volcano in the Sagami Bay, central Japan, and from a whale skeleton at the Torishima Seamount, northwestern Pacific Ocean. As a result, a close relationship between the sediments from the Northern Okushiri Ridge, the known methane-seep, and the whale skeleton was found. This finding represents the first discovery of methane seepage and associated biological communities in the Japan Sea. This also supports the hypothesis that the eastern margin of the northern Japan Sea is at the early stage of new subduction.  相似文献   
67.
68.
This paper describes unusual graphite–sulfide deposits in ultramafic rocks from the Serranía de Ronda (Spain) and Beni Bousera (Morocco). These deposits occur as veins, stockworks and irregular masses, ranging in size from some centimeters to a few meters in thickness. The primary mineral assemblage mainly consists of Fe–Ni–Cu sulfides (pyrrhotite, pentlandite, chalcopyrite and cubanite), graphite and chromite. Weathering occurs in some sulfide-poor deposits that consist of graphite (up to 90%), chromite and goethite. Texturally, graphite may occur as flakes or clusters of flakes and as rounded, nodule-like aggregates. Graphite is highly crystalline and shows light carbon isotopic signatures (δ13C≈− 15‰ to − 21‰). Occasionally, some nodule-like graphite aggregates display large isotopic zoning with heavier cubic forms (probably graphite pseudomorphs after diamond with δ13C up to − 3.3‰) coated by progressively lighter flakes outwards (δ13C up to − 15.2‰).Asthenospheric-derived melts originated the partial melting (and melt–rock reactions) of peridotites and pyroxenites generating residual melts from which the graphite–sulfide deposits were formed. These residual melts concentrated volatile components (mainly CO2 and H2O), as well as S, As, and chalcophile elements. Carbon was incorporated into the melts from the melt–rock reactions of graphite-bearing (formerly diamonds) garnet pyroxenites with infiltrated asthenospheric melts. Graphite-rich garnet pyroxenites formed through the UHP transformation of subducted kerogen-rich crustal material into the mantle. Thus, graphite in most of the studied occurrences has light (biogenic) carbon signatures. Locally, reaction of the light carbon in the melts with relicts of 13C-enriched graphitized diamonds (probably generated from hydrothermal calcite veins in the subducting oceanic crust) reacted with the partial melts to form isotopically zoned nodule-like graphite aggregates.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号