首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   5篇
  国内免费   5篇
测绘学   4篇
大气科学   8篇
地球物理   75篇
地质学   42篇
海洋学   21篇
天文学   22篇
综合类   6篇
自然地理   19篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2018年   4篇
  2017年   5篇
  2016年   6篇
  2015年   6篇
  2014年   8篇
  2013年   1篇
  2012年   6篇
  2011年   6篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   5篇
  2006年   9篇
  2005年   6篇
  2004年   5篇
  2003年   7篇
  2002年   3篇
  2001年   5篇
  2000年   13篇
  1999年   10篇
  1998年   5篇
  1996年   1篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   5篇
  1985年   4篇
  1984年   2篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   4篇
  1976年   7篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
排序方式: 共有197条查询结果,搜索用时 15 毫秒
41.
Despite the strong signal of El Niño/Southern Oscillation (ENSO) events on climate in the Indo-Pacific region, models linking ENSO-based climate variability to seasonal rice production and food security in the region have not been well developed or widely used in a policy context. This study successfully measures the connections among sea surface temperature anomalies (SSTAs), rainfall, and rice production in Indonesia during the past three decades. Regression results show particularly strong connections on Java, where 55% of the country's rice is grown. Two-thirds of the interannual variance in rice plantings and 40% of the interannual variance in rice production during the main (wet) season on Java are explained by year-to-year fluctuations in SSTAs measured 4 and 8 months in advance, respectively. These effects are cumulative; during strong El Niño years, production shortfalls in the wet season are not made up later in the crop year. The analysis demonstrates that quantitative predictions of ENSO's effects on rice harvests can provide an additional tool for managing food security in one of the world's most populous and important rice-producing countries.  相似文献   
42.
Use of tsunami waveforms for earthquake source study   总被引:1,自引:0,他引:1  
Tsunami waveforms recorded on tide gauges, like seismic waves recorded on seismograms, can be used to study earthquake source processes. The tsunami propagation can be accurately evaluated, since bathymetry is much better known than seismic velocity structure in the Earth. Using waveform inversion techniques, we can estimate the spatial distribution of coseismic slip on the fault plane from tsunami waveforms. This method has been applied to several earthquakes around Japan. Two recent earthquakes, the 1968 Tokachi-oki and 1983 Japan Sea earthquakes, are examined for calibration purposes. Both events show nonuniform slip distributions very similar to those obtained from seismic wave analyses. The use of tsunami waveforms is more useful for the study of unusual or old earthquakes. The 1984 Torishima earthquake caused unusually large tsunamis for its earthquake size. Waveform modeling of this event shows that part of the abnormal size of this tsunami is due to the propagation effect along the shallow ridge system. For old earthquakes, many tide gauge records exist with quality comparable to modern records, while there are only a few good quality seismic records. The 1944 Tonankai and 1946 Nankaido earthquakes are examined as examples of old events, and slip distributions are obtained. Such estimates are possible only using tsunami records. Since tide-gauge records are available as far back as the 1850s, use of them will provide unique and important information on long-term global seismicity.  相似文献   
43.
We analyzed the broadband body waves of the 1992 Nicaragua earthquake to determine the nature of rupture. The rupture propagation was represented by the distribution of point sources with moment-rate functions at 9 grid points with uniform spacing of 20 km along the fault strike. The moment-rate functions were then parameterized, and the parameters were determined with the least squares method with some constraints. The centroid times of the individual moment-rate functions indicate slow and smooth rupture propagation at a velocity of 1.5 km/s toward NW and 1.0 km/s toward SE. Including a small initial break which precedes the main rupture by about 10 s, we obtained a total source duration of 110 s. The total seismic moment isM o =3.4×1020 Nm, which is consistent with the value determined from long-period surface waves,M o =3.7×1020 Nm. The average rise time of dislocation is determined to be 10 s. The major moment release occurred along a fault length of 160 km. With the assumption of a fault widthW=50 km, we obtained the dislocationD=1.3 m. From andD the dislocation velocity isD=D/0.1 m/s, significantly smaller than the typical value for ordinary earthquakes. The stress drop =1.1 MPa is also less than the typical value for subduction zone earthquakes by a factor of 2–3. On the other hand, the apparent stress defined by 2E s /M o , where andE s are respectively the rigidity and the seismic wave energy, is 0.037 MPa, more than an order of magnitude smaller than . The Nicaragua tsunami earthquake is characterized by the following three properties: 1) slow rupture propagation; 2) smooth rupture; 3) slow dislocation motion.  相似文献   
44.
45.

Inorganic nitrogen metabolism in the sea
  相似文献   
46.
Which is more important for tropical cyclone (TC) intensity and intensification, sea surface temperature (SST) or tropical cyclone heat potential (TCHP)? Investigations using best-track TC central pressures, TRMM/TMI three-day mean SST data, and an estimated TCHP based on oceanic reanalysis data from 1998 to 2004, show that the central pressure is more closely related to TCHP accumulated from TC formation to its mature stages than to the accumulated SST and its duration. From an oceanic environmental viewpoint, a rapid deepening of TC central pressure occurs when TCHP is relatively high on a basin scale, while composite distributions of TCHP, vertical wind shear, lower tropospheric relative humidity, and wind speed occurring in cases of rapid intensification are different for each TC season. In order to explore the influence of TCHP on TC intensity and intensification, analyses using both oceanic reanalysis data and the results of numerical simulations based on an ocean general circulation model are performed for the cases of Typhoons Chaba (2004) and Songda (2004), which took similar tracks. The decrease in TCHP due to the passage of Chaba led to the suppression of Songda’s intensity at the mature stage, while Songda maintained its intensity for a relatively long time because induced near-inertial currents due to the passage of Chaba reproduced anticyclonic warm eddies appearing on the leftside of Chaba’s track before Songda passed by. This type of intensity-sustenance process caused by the passage of a preceding TC is often found in El Niño years. These results suggest that TCHP, but not SST, plays an important role in TC intensity and its intensification.  相似文献   
47.
In order to investigate the formation mechanism of rapid decrease of maritime sea surface temperature (SST) observed by R/V Keifu Maru, the ocean response to Typhoon Rex is simulated using a mixed layer model. The rapid decrease of the maritime SST is successfully simulated with realistic atmospheric forcing and an entrainment scheme of which sources of turbulent kinetic energy (TKE) are production due to wind stress, generation during free convection, and production due to current shear. The rapid decrease at the observed station by R/V Keifu Maru is not produced by instant atmospheric forcing but is mainly produced by entrainment on the right side of the running typhoon as a part of cooling area during its passage, and remained during a few days. The sea surface cooling (SSC) is evident along the track and on the right side of the running typhoon, which is similar to the SSC of satellite observation by TRMM/TMI. The conspicuous SSC produced by both entrainment and upwelling is situated just under the track of typhoon when the typhoon moves slower. Intercomparison of entrainment schemes of the mixed layer model is implemented. Frictional velocity and buoyancy effects are effective for a gradual SSC covering the wide region. In contrast, the effect of current shear at the mixed layer base is related to the amount of SSC and the sharp horizontal gradient of SSC. The entrainment scheme including all three TKE sources has the best performance for SSC simulation.  相似文献   
48.
Hydrologic balance in high‐altitude, mid‐latitude mountain areas is important in terms of the water resources available to associated lowlands. This study examined how current and historical shifts in precipitation (P) patterns and concurrent increases in temperature (T) affected runoff (Q) and other hydrologic components in a mid‐latitude mountain catchment of central Japan, using a combination of long‐term data and a simplified hydrologic model, along with their stochastic treatment. The availability of intensive meteorological and hydrological data from the period 1997–2001 allowed the derivation of key relationships for the current climate that tie the forcing term to the parameters or state variables. By using the data recorded in the period 1965–2001, the force for driving the historical simulation was generated. Based on this model and historical shifts in P and T, the probability density functions of Q (pdf(Q)) was computed. A main novelty in this study is that such a stochastic representation, which is useful for considering the influence of projected shifts in environmental factors on the hydrologic budget, was provided. Despite the large increase in the rate of T in winter and spring, pdf(Q) in spring and summer varied appreciably during the time studied mainly because of an increase in snowmelt. An interannual change in whole‐year Q was robust to shifts in T because while Q in spring increased, in summer it decreased, implying a crucial effect of global warming on mountain hydrologic regimes is change in the timing of Q. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
49.
The focal process of the Sanriku earthquake of March 2, 1933, is discussed in relation to the bending mechanism of the lithosphere. On the basis of the P times obtained at more than 200 stations, it is confirmed that the hypocenter of this earthquake is within the lithosphere beneath the Japan trench. The P wave fault plane solution, the amplitude of long-period (100 s) Love and Rayleigh waves and two near-field observations suggest, almost definitely, that the Sanriku earthquake represents a predominantly normal faulting on a plane dipping 45° towards N 90° W. A fault size of 185 × 100 km2, in agreement with the size of the aftershock area, is required to yield a slip dislocation of 3.3 m, a value consistent with the tsunami data. This result suggests that the fracture took place over the entire thickness of the lithosphere, thereby precluding the possibility that the Sanriku earthquake merely represents a surface tensile crack due to the bending of the lithosphere. This large scale lithospheric faulting is presumably due to a gravitational pull exerted by the cold sinking lithosphere. The fracture probably took place on an old fault plane which had once fractured and healed up. The existence of this fracture zone which decouples, to some extent, the oceanic lithosphere from the sinking lithosphere accounts for the sharp bend of the lithosphere beneath oceanic trenches and also the abrupt disappearance of seismic activity across oceanic trenches. The sharp bend of the lithosphere is therefore a result, not the cause, of great earthquakes beneath oceanic trenches.  相似文献   
50.
By equipping structures with appropriate actuators, sensors and microprocessors, it is possible to suppress actively the undesirable vibrations of the structures. Due to small energy requirements, the vibration suppression in large space trusses orbiting the Earth by controlling the elongations and contractions of length-adjustable bars of the truss has been shown to be feasible both theoretically and experimentally. This method of vibration suppression is part of the ‘adaptive structures technology’. It can be used for suppressing the vibrations of a building subjected to earthquake or wind excitations, provided that the much higher energy and power requirements are met. In this work the use of gravitational energy of the mass of the building is proposed for active vibration control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号