首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   481篇
  免费   20篇
  国内免费   7篇
测绘学   8篇
大气科学   38篇
地球物理   163篇
地质学   126篇
海洋学   46篇
天文学   78篇
综合类   6篇
自然地理   43篇
  2023年   2篇
  2021年   6篇
  2020年   8篇
  2019年   10篇
  2018年   13篇
  2017年   13篇
  2016年   25篇
  2015年   4篇
  2014年   12篇
  2013年   18篇
  2012年   13篇
  2011年   27篇
  2010年   11篇
  2009年   20篇
  2008年   29篇
  2007年   28篇
  2006年   32篇
  2005年   21篇
  2004年   29篇
  2003年   16篇
  2002年   15篇
  2001年   8篇
  2000年   13篇
  1999年   8篇
  1998年   7篇
  1997年   6篇
  1995年   8篇
  1994年   4篇
  1993年   9篇
  1992年   3篇
  1991年   7篇
  1990年   7篇
  1989年   12篇
  1988年   9篇
  1987年   4篇
  1986年   8篇
  1985年   3篇
  1984年   7篇
  1983年   4篇
  1982年   2篇
  1981年   4篇
  1979年   2篇
  1978年   2篇
  1977年   5篇
  1975年   2篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
排序方式: 共有508条查询结果,搜索用时 15 毫秒
501.
Seismic experiments were conducted on Showa-Shinzan, a parasitic lava dome of volcano Usu, Hokkaido, which was formed during 1943–1945 activity. Since we found that firework shots fired on the ground can effectively produce seismic waves, we placed many seismometers on and around the dome during the summer festivals in 1984 and 1985. The internal structure had been previously studied using a prospecting technique employing dynamite blasts in 1954. The measured interval velocity across the dome in 1984 ranges 1.8–2.2 km/s drastically low compared to the results (3.0–4.0 km/s) in 1954; in addition, the velocity is 0.3–0.5 km/s higher than that in the surrounding area. The variation of the observed first arrival amplitudes can be explained by geometrical spreading in the high velocity lava dome. These observations show a marked change in the internal physical state of the dome corresponding to a drop in the measured highest temperature at fumaroles on the dome from 800°C in 1947 to 310°C in 1986.  相似文献   
502.
Onshore tsunami deposits resulting from the 1993 Southwest Hokkaido and 1983 Japan Sea earthquakes were described to evaluate the feasibility of tsunami deposits for inferring paleoseismic events along submarine faults. Tsunami deposits were divided into three types, based on their composition and aerial distribution: (A) deposits consisting only of floating materials, (B) locally distributed siliclastic deposits, and (C) widespread siliclastic deposits. The most widely distributed tsunami deposits consist of the first two types. Type C deposits are mostly limited to areas where the higher tsunami runup was observed. The scale of tsunami represented by vertical tsunami runup is an important factor controlling the volume of tsunami deposits. The thickest deposits, about 10 cm, occur behind coastal dunes. To produce thick siliclastic tsunami deposits, a suitable source area, such as sand bar or dune, must be available in addition to sufficient vertical tsunami runup. Estimation of the amounts of erosion and deposition indicates that tsunami deposits were derived from both onshore and shoreface regions. The composition and grain size of the tsunami deposits strongly reflect the nature of the sedimentary materials of their source area. Sedimentary structures of the tsunami deposits suggest both low and high flow régimes. Consequently, it seems very difficult to identify tsunami deposits based only on grain size distribution or sedimentary structure of a single site in ancient successions.  相似文献   
503.
Summary The diurnal variations of water vapor in central Japan were investigated with GPS-derived precipitable water (PWV) and surface meteorological data as classified to three kinds of locations. Twenty-five clear days in central Japan in August 2000 were investigated to clarify the role of water vapor in the nocturnal maximum in the diurnal cycle of convective rainfall. The diurnal variations of PWV and some meteorological factors were composite during the selected days at 6 stations. The PWV shows a clear diurnal cycle with the amplitude of 3.4 mm to 8.8 mm and changes little during the period from the morning to noon. The daily amplitude of PWV is the largest in basin and smallest in plain although mean of PWV keeps high value in plain. A typical feature of the diurnal variation in central Japan is a maximum appearing in the evening. The time of maximum is from 1800 LST to 2000 LST, and minima appears at noon nearly in mountainous area and basin, while in early morning in plain. The diurnal maximum of PWV appears earlier in mountainous region than in plain. A diurnal cycle of specific humidity can be observed in all locations, and the amplitude in mountainous region is especially large compared with that in basin and plain. It is important to notice that there are remarkable differences in specific humidity among the six stations. The results suggest that the diurnal variation of PWV seems to be strongly affected by the local thermal circulations generated by the topography around these stations. The moisture transport causes the differences in phase of the diurnal cycle of PWV between different locations as well as the phase difference in precipitation. A very clear diurnal variation in surface air temperature is similar to that of solar radiation, with a minimum in the morning and a maximum in early afternoon. Maximum of surface wind speed are corresponded to peak of precipitation very well. It can be concluded that the amplitude of solar radiation increases with altitude as opposed to the situation of PWV generally. The precipitation observed frequently in the evening also shows a similar diurnal variation to that of the PWV, indicating the peak of precipitation appearing in late afternoon or in the evening over central Japan. Meanwhile the PWV reaches its nocturnal maximum. There is a good relationship between the diurnal cycle of observed precipitation and that of the PWV. Authors’ addressess: Guoping Li, Department of Atmospheric Sciences, Chengdu University of Information Technology, #3 Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, P.R. China; Dingfa Huang, Department of Surveying Engineering, Southwest Jiaotong University, Chengdu, China; Fujio Kimura, Tomonori Sato, Institute of Geoscience, University of Tsukuba, Tsukuba, Japan.  相似文献   
504.
The Southern Copper Belt, Carajás Province, Brazil, hosts several iron oxide–copper–gold (IOCG) deposits, including Sossego, Cristalino, Alvo 118, Bacuri, Bacaba, Castanha, and Visconde. Mapping and U–Pb sensitive high-resolution ion microprobe (SHRIMP) IIe zircon geochronology allowed the characterization of the host rocks, situated within regional WNW–ESE shear zones. They encompass Mesoarchean (3.08–2.85 Ga) TTG orthogneiss, granites, and remains of greenstone belts, Neoarchean (ca. 2.74 Ga) granite, shallow-emplaced porphyries, and granophyric granite coeval with gabbro, and Paleoproterozoic (1.88 Ga) porphyry dykes. Extensive hydrothermal zones include albite–scapolite, biotite–scapolite–tourmaline–magnetite alteration, and proximal potassium feldspar, chlorite–epidote and chalcopyrite formation. U–Pb laser ablation multicollector inductively coupled mass spectrometry (LA-MC-ICP-MS) analysis of ore-related monazite and Re–Os NTIMS analysis of molybdenite suggest multiple Neoarchean (2.76 and 2.72–2.68 Ga) and Paleoproterozoic (2.06 Ga) hydrothermal events at the Bacaba and Bacuri deposits. These results, combined with available geochronological data from the literature, indicate recurrence of hydrothermal systems in the Southern Copper Belt, including 1.90–1.88-Ga ore formation in the Sossego–Curral ore bodies and the Alvo 118 deposit. Although early hydrothermal evolution at 2.76 Ga points to fluid migration coeval with the Carajás Basin formation, the main episode of IOCG genesis (2.72–2.68 Ga) is related to basin inversion coupled with Neoarchean (ca. 2.7 Ga) felsic magmatism. The data suggest that the IOCG deposits in the Southern Copper Belt and those in the Northern Copper Belt (2.57-Ga Salobo and Igarapé Bahia–Alemão deposits) do not share a common metallogenic evolution. Therefore, the association of all IOCG deposits of the Carajás Province with a single extensive hydrothermal system is precluded.  相似文献   
505.
The Sr, Ba, and rare earth elements (REEs) concentrations and Sr isotopic composition of anhydrite and gypsum have been determined for samples from the Matsumine, Shakanai, and Hanaoka Kuroko-type massive sulfide–sulfate deposits of northern Japan to evaluate the mechanisms of sekko (anhydrite and gypsum) ore formation. The Sr isotopic compositions of the samples fall in the range of 0.7077–0.7087, intermediate between that for middle Miocene (13–15 Ma) seawater (0.7088) (Peterman et al., Geochim Cosmochim Acta, 34:105–120, 1970) and that for country rocks (e.g., 0.7030–0.7050) (Shuto, Assn Geol Collab Japan Monograph 18:91–105, 1974). The Kuroko anhydrite samples exhibit two types of chondrite-normalized REE patterns: one with a decrease from light REEs (LREEs) to heavy REEs (HREEs) (type I), and another with a LREE-depleted pattern (type II). Based on the Sr content and isotopic ratio (assuming an Sr/Ca (mM/M) of 8.7 for seawater), anhydrite is considered to have formed by mixing of preheated seawater with a hydrothermal solution of Sr/Ca (mM/M) = ca. 0.59–1.36 under the condition in which the partition coefficient (Kd) ranges between ca. 0.5 and 0.7. This results in the formation of anhydrite with higher Sr content with an Sr isotopic value close to that of seawater under seawater-dominant conditions. Larger crystals of type II anhydrite are partly replaced by smaller ones, indicating that anhydrite dissolution and recrystallization occurred after or during the formation of sekko ore. Gypsum, which partially replaces anhydrite in the Kuroko deposits, also exhibits two distinct chondrite-normalized REE patterns. Because LREEs are likely to be more readily mobilized during dissolution and recrystallization, it is hypothesized that LREEs are leached from type I anhydrite, resulting in the formation of type II anhydrite with LREE-depleted profiles.  相似文献   
506.
Kantaro  Fujioka  Wataru  Tokunaga  Hisayoshi  Yokose  Junzo  Kasahara  Toshinori  Sato  Ryo  Miura  Teruaki  Ishii 《Island Arc》2005,14(4):616-622
Abstract   The Hahajima Seamount, located at the junction between the Izu–Bonin and Mariana forearc slopes, is a notable rectangular shape and consists of various kinds of rocks. An elaborated bathymetric swath mapping with geophysical measurements and dredge hauls showed the Hahajima Seamount is cut by two predominating lineaments, northeast–southwest and northwest–southeast. These lineaments are of faults based on the topographic cross-sections and a 3-D view (whale's eye view). The former lineament is parallel to the transform faults of the Parece Vela Basin, whereas the latter is parallel to the nearby transform fault on the subducting Pacific Plate. The rocks constituting the seamount are ultramafic rocks (mostly harzburgite), boninite, basalt, andesite, gabbro, breccia and sedimentary rocks, which characterize an island arc and an ocean basin. Gravity measurement and seismic reflection survey offer neither a definite gravity anomaly at the seamount nor definite internal structures beneath the seamount. A northwest–southeast-trending fault and small-scale serpentine flows were observed during submersible dives at the Hahajima Seamount. The rectangular shape, size of the seamount, various kinds of rocks and geophysical measurements strongly suggest that the Hahajima Seamount is not a simple serpentine seamount controlled by various tectonic movements, as previously believed, but a tectonic block.  相似文献   
507.
A number of uncertainties exist in climate simulation because the results of climate models are influenced by factors such as their dynamic framework, physical processes, initial and driving fields, and horizontal and vertical resolution. The uncertainties of the model results may be reduced, and the credibility can be improved by employing multi-model ensembles. In this paper, multi-model ensemble results using 10-year simulations of five regional climate models (RCMs) from December 1988 to November 1998 over Asia are presented and compared. The simulation results are derived from phase II of the Regional Climate Model Inter-comparison Project (RMIP) for Asia. Using the methods of the arithmetic mean, the weighted mean, multivariate linear regression, and singular value decomposition, the ensembles for temperature, precipitation, and sea level pressure are carried out. The results show that the multi-RCM ensembles outperform the single RCMs in many aspects. Among the four ensemble methods used, the multivariate linear regression, based on the minimization of the root mean square errors, significantly improved the ensemble results. With regard to the spatial distribution of the mean climate, the ensemble result for temperature was better than that for precipitation. With an increasing number of models used in the ensembles, the ensemble results were more accurate. Therefore, a multi-model ensemble is an efficient approach to improve the results of regional climate simulations.  相似文献   
508.
The Las Matras Block in Central Argentina constitutes the southernmost part of the Cuyania terrane, which was accreted to the southwestern margin of Gondwana during the Early to Mid Ordovician Famatinian orogeny. The Grenville-aged rocks of the Las Matras Block are represented by the tonalitic to trondhjemitic Las Matras pluton. A new U-Pb conventional zircon age of 1244±42 Ma confirms previous Sm-Nd and Rb-Sr isochron ages of this pluton. Mineral composition data are consistent with the tonalitic-trondhjemitic character of the pluton, and constrain its emplacement level to 1.9 to 2.6 kb. This shallow level of emplacement and the undeformed character of the pluton are distinctive features of this southernmost basement. A regional comparison indicates that the igneous-metamorphic evolution of the Grenville-aged basement rocks of the Cuyania terrane occurred over a period of more than 200 million years, with ages older than 1200 Ma up to those close to 1000 Ma. The shallowest crustal level is found in Las Matras, suggesting a southward shallowing of the exposed level of basement. The deformation and metamorphism associated with the collisional Famatinian orogeny affect both the Cuyania terrane and the adjacent western margin of Gondwana, and the Gondwana margin was also the locus of the related arc magmatism, but the compressive effects of the collision decrease in intensity toward the south. The Famatinian metamorphism and magmatism continue even further south into the Patagonia region, but the southern continuity of the Cuyania terrane into this region remains uncertain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号