首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   479篇
  免费   22篇
  国内免费   7篇
测绘学   8篇
大气科学   38篇
地球物理   163篇
地质学   126篇
海洋学   46篇
天文学   78篇
综合类   6篇
自然地理   43篇
  2023年   2篇
  2021年   6篇
  2020年   8篇
  2019年   10篇
  2018年   13篇
  2017年   13篇
  2016年   25篇
  2015年   4篇
  2014年   12篇
  2013年   18篇
  2012年   13篇
  2011年   27篇
  2010年   11篇
  2009年   20篇
  2008年   29篇
  2007年   28篇
  2006年   32篇
  2005年   21篇
  2004年   29篇
  2003年   16篇
  2002年   15篇
  2001年   8篇
  2000年   13篇
  1999年   8篇
  1998年   7篇
  1997年   6篇
  1995年   8篇
  1994年   4篇
  1993年   9篇
  1992年   3篇
  1991年   7篇
  1990年   7篇
  1989年   12篇
  1988年   9篇
  1987年   4篇
  1986年   8篇
  1985年   3篇
  1984年   7篇
  1983年   4篇
  1982年   2篇
  1981年   4篇
  1979年   2篇
  1978年   2篇
  1977年   5篇
  1975年   2篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
排序方式: 共有508条查询结果,搜索用时 15 毫秒
411.
A predictability study on wave forecast of the Arctic Ocean is necessary to help identify hazardous areas and ensure sustainable shipping along the trans-Arctic routes. To assist with validation of the Arctic Ocean wave model, two drifting wave buoys were deployed off Point Barrow, Alaska for two months in September 2016. Both buoys measured significant wave heights exceeding 4 m during two different storm events on 19 September and 22 October. The NOAA-WAVEWATCH III? model with 16-km resolution was forced using wind and sea ice reanalysis data and obtained general agreement with the observation. The September storm was reproduced well; however, model accuracy deteriorated in October with a negative wave height bias of around 1 m during the October storm. Utilising reanalysis data, including the most up-to-date ERA5, this study investigated the cause: grid resolution, wind and ice forcing, and in situ sea level pressure observations assimilated for reanalysis. The analysis has found that there is a 20% reduction of in situ SLP observations in the area of interest, presumably due to fewer ships and deployment options during the sea ice advance period. The 63-member atmospheric ensemble reanalysis, ALERA2, has shown that this led to a larger ensemble spread in the October monthly mean wind field compared to September. Since atmospheric physics is complex during sea ice advance, it is speculated that the elevated uncertainty of synoptic-scale wind caused the negative wave model bias. This has implications for wave hindcasts and forecasts in the Arctic Ocean.  相似文献   
412.
Laboratory measurements for compressional and shear wave velocities (Vp and Vs, respectively) and porosity were conducted with core samples from the Nobeoka Thrust Drilling Project (NOBELL) under controlled effective pressure (5–65 MPa at 5 MPa intervals) and wet conditions. Samples were classified according to deformation texture as phyllite, foliated cataclasite, or non‐foliated cataclasite. Measured values of Vp, Vs, and porosity are within a range of 5.17–5.57 km/s, 2.60–2.71 km/s, and 2.75–3.10 %, respectively, for phyllite; 4.89–5.23 km/s, 2.46–2.57 km/s, and 3.58–4.53 %, respectively, for foliated cataclasite; and 4.90–5.32 km/s, 2.51–2.63 km/s, and 3.79–4.60 %, respectively, for non‐foliated cataclasite, which are all consistent with the previous laboratory experiments conducted with outcrop samples under dry conditions. However, our results also indicate higher Vp and Vs and lower porosity than those measured by the previous studies that adopted the wire‐line logging methods. The variations in Vp, Vs, and porosity are controlled by deformation structure and are greater for phyllite and foliated cataclasite than for non‐foliated cataclasite.  相似文献   
413.
Although the behavior of friction sliding bearings is well understood, the failure behavior has not been thoroughly investigated. However, predicting and understanding the failure of bearings is an important key in designing isolated structures to minimize their collapse in extreme events, and thus, this study is critical. Because of its relative simplicity and particular availability in certain markets, the failure of the double friction pendulum (DFP) bearing at its physical displacement limit is investigated. The bearing is modeled with a rigid body model including inertia for each of the bearing components. A nonlinear viscoelastic impact model is included to simulate the impact between bearing components. As isolation systems are particularly vulnerable to long‐period excitations, analytical pulses are used as input excitations to investigate the influences of pulse parameters on the failure of DFP. The influences of DFP design parameters are investigated as well. To confirm that the response to the analytical pulses correctly represents the behavior under long‐period ground motions, wavelet analysis to is performed on 14 pairs of pulse‐type ground motion records to extract their pulses, and the failure prediction made from the extracted analytical pulse is compared with the failure from the real ground motions. It is found that using the extracted pulses provides a good estimation for the failure prediction of the ground motions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
414.
1 IntroductionIncreased blood pressure appears to be one of theprimary risk factors of circulatory organ diseases suchas encepharo-apoplexy, encepharo-infarction and cardi-ac infraction. Angiotensin-I-converting enzyme (ACE)plays an important role in the rennin-angiotensin sys-tem by regulating blood pressure. Antihypertensivedrugs such as captopril and enalapril are potent ACEinhibitors (Ondetti et al., 1977). Recently, severalinhibitory peptides derived from food proteins havebeen isolat…  相似文献   
415.
The Neoproterozoic Earth was shaped largely by the Grenvillian and Pan-African orogenies. Out of these, the Grenvillian orogeny has long been regarded to be of minor nature in terms of global-scale orogenic episodes, whereas the Pan-African orogeny has been widely recognized in many continental fragments, although not in major parts of Asia. Based on chronological information in zircons from major river mouths across several important terrains of the globe, we show here that the Grenvillian orogeny contributed significantly to the formation of the continental crust. The time period between 0.6 Ga and 0.8 Ga marked the climax at the dawn of the Pan-African orogeny. Continental crust formed in this period is concentrated in the Pan-African orogenic belts widely across the globe. These regions were widespread over the half hemisphere of the globe, and were subsequently reduced in size after they moved to form Laurasia. The normalized frequency distribution of zircon ages from river-mouth sand over the world clearly demonstrates that Neoproterozoic and (0.9–0.6 Ga) and Grenvillian (1.3–1.0 Ga) peaks define the largest population. This means that extensive subduction, and hence active plate tectonics, might have operated through these periods. The zircon study has also brought to light new regions of the Grenvillian orogenic belts, particularly in the continents which are now covered by thick Phanerozoic sedimentary basins. Based on the new locations of Grenvillian orogens identified in this study, and using the distribution patterns as a marker bed, we propose revised paleogeographic configurations of the Rodinia and Gondwana supercontinents.Our results demonstrate that the Neoproterozoic was the most active period of crust formation in the Earth. The cold basins, formed right after the assembly of Rodinia, exhibit a basin chain fringing the northern periphery of Rodinia, which turned into sites of mantle upwellings and led to the rifting and separation of the supercontinental assembly. The continents then moved northwards after the formation of Gondwana at ca. 540 Ma, and enlarged the northern half of the supercontinent Pangea since 250 Ma.Based on the results, we also evaluate the role of supercontinents in the mechanism of generation of superplumes addressing the enigma that the coldest mantle right above the Core–Mantle Boundary turns to the hottest one over a period of several hundreds of million years. Slab graveyard formed by the Pan-African subduction can be imaged through P-wave tomography. We postulate that the high-velocity anomaly in the D” layer underneath Gondwana has now transformed to the low-V regions to generate the African superplume. The tectonic history of solid Earth in the Phanerozoic seems to be controlled by the slab graveyards formed by the Grenvillian orogeny ca. 1.0 Ga.  相似文献   
416.
Understanding rainfall‐runoff processes is crucial for prevention and prediction of water‐related natural disasters. Sulfur hexafluoride (SF6) is a potential tracer, but few researches have applied it for rainfall‐runoff process studies. We observed multiple tracers including SF6 in spring water at 1‐ to 2‐hr intervals during rainstorm events to investigate the effectivity of SF6 tracer in rainfall–runoff studies through the clarification of rainfall–runoff process. The target spring is a perennial spring in a forested headwater catchment with an area of 0.045 km2 in Fukushima, Japan. The relationship between the SF6 concentration in spring water and the spring discharge volume was negative trend; the SF6 concentration in spring water becomes low as the spring discharge volume increases especially during rainstorms. The hydrograph separation using SF6 and chloride ion tracers was applied for determining the contribution of principal sources on rainfall–runoff water. It suggested more than 60% contribution of bedrock groundwater at the rainfall peak and high percentage contribution continued even in the hydrograph recession phase. Based on observed low SF6 concentration in groundwater after heavy rainfall, the replacement of groundwater near the spring with bedrock groundwater is indicated as a mechanism for water discharge with low SF6 concentration during rainfall events. Consequently, rainstorm events play an important role as triggers in discharging water stored in the deeper subsurface area. In addition, SF6 tracer is concluded as one of the strongest tracers for examining rainfall–runoff process studies. And, therefore, this study provided new insights into the dynamics of groundwater and its responses to rainfall in terms of SF6 concentration variance in water in headwater regions.  相似文献   
417.
Hiroyuki Sato  Kei Kurita 《Icarus》2010,207(1):248-264
Floor-fractured craters (FFC) are a peculiar form of degradation of impact craters defined by the presence of crevice networks and mesas affecting crater floors. They are preferentially distributed near chaotic terrains and outflow channels. The scope of this paper is to present a detailed systematic analysis of FFC at Xanthe Terra. FFC morphologies in this region are classified into five types making a picture of different stages of the same degradation process. FFC are geographically intermixed with un-fractured normal craters (non-FFC). Young craters are less prone to show this type of degradation, as suggested by fresh ejecta layer with preserved crater floor. Size distributions of FFC and non-FFC indicate that larger craters are preferentially fractured. Careful examinations of the crater floor elevations reveal that the crevices often extend deeper than the original crater cavity. Furthermore, an onset depth for the formation of FFC is evidenced from the difference of spatial distributions between FFC and non-FFC. Roof-collapsed depressions observed in the same region have been also documented and their characteristics suggest the removal of subsurface material at depth from about 1200 to 4000 m. These observations taken together suggest a subsurface zone of volume deficit at depth from 1 to 2 km down to several kilometers responsible for FFC formation. Then a scenario of FFC formations is presented in the context of groundwater discharge events at the late Hesperian. This scenario involves two key processes, Earth fissuring and piping erosion, known to occur with rapid groundwater migrations on Earth.  相似文献   
418.
The Iwate–Miyagi Nairiku Earthquake in 2008, whose seismic intensity was M. 7.2 in Japan Meteorological Agency (JMA) scale, induced innumerable landslides on the southern flank of Mt. Kurikoma volcano allocated along the Ou Backbone Range in Northeast Japan. Most landslides are detected in a hanging wall side of the seismic fault. Those landslides are classified into five types: deep-seated slide, debris slide, shallow debris slide, secondary shallow debris slide, and debris flow. Most common landslide types induced by the earthquake are shallow debris slides and subsequent debris flows. They are intensively distributed along steep gorges incising a volcanic skirt of Mt. Kurikoma, consisting of welded ignimbrite of the Pleistocene age. Debris flows are also distributed even along gentle river floors in the southern lower flank of the volcano. The area of densely distributed debris slides, shallow debris slides, and debris flows is concordant with that of severe seismic tremor. Thus, genetic processes of landslides induced by the Iwate–Miyagi Nairiku Earthquake in 2008 are attributed to multiple causative factors such as geology, topography, and seismic force.  相似文献   
419.
420.
Performance of a regional climate model (RCM), WRF, for downscaling East Asian summer season climate is investigated based on 11-summer integrations associated with different climate conditions with reanalysis data as the lateral boundary conditions. It is found that while the RCM is essentially unable to improve large-scale circulation patterns in the upper troposphere for most years, it is able to simulate better lower-level meridional moisture transport in the East Asian summer monsoon. For precipitation downscaling, the RCM produces more realistic magnitude of the interannual variation in most areas of East Asia than that in the reanalysis. Furthermore, the RCM significantly improves the spatial pattern of summer rainfall over dry inland areas and mountainous areas, such as Mongolia and the Tibetan Plateau. Meanwhile, it reduces the wet bias over southeast China. Over Mongolia, however, the performance of precipitation downscaling strongly depends on the year: the WRF is skillful for normal and wet years, but not for dry years, which suggests that land surface processes play an important role in downscaling ability. Over the dry area of North China, the WRF shows the worst performance. Additional sensitivity experiments testing land effects in downscaling suggest the initial soil moisture condition and representation of land surface processes with different schemes are sources of uncertainty for precipitation downscaling. Correction of initial soil moisture using the climatology dataset from GSWP-2 is a useful approach to robustly reducing wet bias in inland areas as well as to improve spatial distribution of precipitation. Despite the improvement on RCM downscaling, regional analyses reveal that accurate simulation of precipitation over East China, where the precipitation pattern is strongly influenced by the activity of the Meiyu/Baiu rainfall band, is difficult. Since the location of the rainfall band is closely associated with both lower-level meridional moisture transport and upper-level circulation structures, it is necessary to have realistic upper-air circulation patterns in the RCM as well as lower-level moisture transport in order to improve the circulation-associated convective rainfall band in East Asia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号