首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   481篇
  免费   20篇
  国内免费   7篇
测绘学   8篇
大气科学   38篇
地球物理   163篇
地质学   126篇
海洋学   46篇
天文学   78篇
综合类   6篇
自然地理   43篇
  2023年   2篇
  2021年   6篇
  2020年   8篇
  2019年   10篇
  2018年   13篇
  2017年   13篇
  2016年   25篇
  2015年   4篇
  2014年   12篇
  2013年   18篇
  2012年   13篇
  2011年   27篇
  2010年   11篇
  2009年   20篇
  2008年   29篇
  2007年   28篇
  2006年   32篇
  2005年   21篇
  2004年   29篇
  2003年   16篇
  2002年   15篇
  2001年   8篇
  2000年   13篇
  1999年   8篇
  1998年   7篇
  1997年   6篇
  1995年   8篇
  1994年   4篇
  1993年   9篇
  1992年   3篇
  1991年   7篇
  1990年   7篇
  1989年   12篇
  1988年   9篇
  1987年   4篇
  1986年   8篇
  1985年   3篇
  1984年   7篇
  1983年   4篇
  1982年   2篇
  1981年   4篇
  1979年   2篇
  1978年   2篇
  1977年   5篇
  1975年   2篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
排序方式: 共有508条查询结果,搜索用时 15 毫秒
271.
After the occurrence of various destructive earthquakes in Japan, extensive efforts have been made to improve the seismic performance of bridges. Although improvements to the ductile capacities of reinforced concrete (RC) bridge piers have been developed over the past few decades, seismic resilience has not been adequately ensured. Simple ductile structures are not robust and exhibit a certain level of damage under extremely strong earthquakes, leading to large residual displacements and higher repair costs, which incur in societies with less-effective disaster response and recovery measures. To ensure the seismic resilience of bridges, it is necessary to continue developing the seismic design methodology of RC bridges by exploring new concepts while avoiding the use of expensive materials. Therefore, to maximize the postevent operability, a novel RC bridge pier with a low-cost sliding pendulum system is proposed. The seismic force is reduced as the upper component moves along a concave sliding surface atop the lower component of the RC bridge pier. No replaceable seismic devices are included to lengthen the natural period; only conventional concrete and steel are used to achieve low-cost design solutions. The seismic performance was evaluated through unidirectional shaking table tests. The experimental results demonstrated a reduction in the shear force transmitted to the substructure, and the residual displacement decreased by establishing an adequate radius of the sliding surface. Finally, a nonlinear dynamic analysis was performed to estimate the seismic response of the proposed RC bridge pier.  相似文献   
272.
The SuperDARN HF radars have been employed in the past to investigate the spectral characteristics of coherent backscatter from L-shell aligned features in the auroral E region. The present study employs all-sky camera observations of the aurora from Husafell, Iceland, and the two SuperDARN radars located on Iceland, Þykkvibær and Stokkseyri, to determine the optical signature of such backscatter features. It is shown that, especially during quiet geomagnetic conditions, the backscatter region is closely associated with east-west aligned diffuse auroral features, and that the two move in tandem with each other. This association between optical and radar aurora has repercussions for the instability mechanisms responsible for generating the E region irregularities from which radars scatter. This is discussed and compared with previous studies investigating the relationship between optical and VHF radar aurora. In addition, although it is known that E region backscatter is commonly observed by SuperDARN radars, the present study demonstrates for the first time that multiple radars can observe the same feature to extend over at least 3 h of magnetic local time, allowing precipitation features to be mapped over large portions of the auroral zone.  相似文献   
273.
Kohei  Sato Katsuo  Kase 《Island Arc》1996,5(3):216-228
Abstract The metallogeny of Japan can be grouped into four environments: (1) Paleozoic-Mesozoic stratiform Cu and Mn deposits within accretionary complexes, (2) Cretaceous-Paleogene post-accretionary deposits related to felsic magmatism in a continental-margin are environment, (3) Miocene epigenetic and syngenetic deposits related to felsic magmatism during back-arc opening, and (4) late Miocene-Quaternary volcanogenic deposits in an island-are environment. Group (1) deposits were a major source of Cu and Mn for the Japanese mining industry, and this style of mineralization is reviewed here. The stratiform Cu and Mn deposits were formed on the sea floor during the late Paleozoic to Mesozoic, and were subsequently accreted to active continental margins mainly in Jurassic to Cretaceous age. The Cu sulfide deposits, termed Besshi type, are classified into two subtypes: the Besshi-subtype deposit is related to basaltic volcanism, probably at a mid-oceanic ridge or rise; the Hitachi subtype is related to bimodal volcanism, probably in a back-arc or continental rift. Most of the Besshisubtype deposits occur in the Sanbagawa metamorphic belt, with some occurrences in weakly metamorphosed Jurassic and Cretaceous accretionary terrains. This subtype is divided into two groups: the sediment-barren group is hosted by basalt-chert sequences; whereas the sedimentcovered group is hosted by basalt-shale sequences. Both subtypes are characterized by S isotope trends similar to those of sea-floor sulfide deposits now forming at mid-oceanic ridges. The Hitachi-subtype deposits occur in late Paleozoic volcanic-sedimentary sequences and lack pelagic sediments. These deposits are characterized by association of sphalerite- and barite-rich ores. The Mn deposits occur mainly in Middle Jurassic to Early Cretaceous accretionary complexes containing abundant chert beds of Triassic to Jurassic age. Their locations are well separated from those of the Cu sulfide deposits. The Mn deposits are divided into two types: the Mn type, hosted by chert, and the Fe-Mn type, sandwiched between chert and basaltic volcanic rocks. The Mn-type ores appear to have deposited on the deep-sea floor further from the site of hydrothermal activity than the Fe-Mn type. Primary Mn precipitates may have been transformed to rhodochrosite and other Mn-minerals during diagenesis. Many of the Mn deposits were significantly metamorphosed during intrusion of Cretaceous granitoids, resulting in a very complex mineralogy.  相似文献   
274.
Late Quaternary foraminifera assemblages have been examined in two sediment cores (MD179‐3296 and MD179‐3317) from cold seep areas in the eastern margin of the Japan Sea, off Joetsu, Niigata Prefecture. Foraminifera assemblages in core MD179‐3296, which was located at the center of a pockmark on the Umitake Spur, show no evidence of methane flux and, especially in its upper portion, share the same paleo‐environmental history as other free gas hydrate areas of the Japan Sea. In comparison, in the core MD179‐3317 at the center of a pockmark at Joetsu Knoll, foraminiferal distributions were strongly affected by methane activities and, in the main part of the core, were deposited under local conditions. Three horizons were identified in this core, which are characterized by the high abundance value of Thalmannammina parkerae and might be related to methane flux due to sea level fall especially through late marine isotope stage (MIS) 3 and MIS 2.  相似文献   
275.
Aki (1969) first modeled coda waves of a local earthquake as a superposition of scattered surface waves. This paper attempts to clarify the constituents of surface-wave coda at long periods at very long lapse times. For a large earthquake of magnitude 7 or larger, vertical component oscillation in periods from 90 to 180 s persists for more than 20 hours from the earthquake origin time. Although the early portion of the coda envelope is successfully modeled by assuming incoherent scattered Rayleigh waves by heterogeneities distributed all over the Earth, the later potion of the observed coda envelope (roughly later than 35,000 s) has systematically larger amplitude than theoretical prediction. To clarify the cause of this discrepancy, we studied the constituents of vertical-component seismograms of three large earthquakes recorded by the F-net in Japan using the f-k power spectral analysis. We found that the direct and scattered fundamental-mode Rayleigh waves of velocity about 3.7 km/s are dominant in the earlier part of each envelope. It justifies the use of a scattering model of the fundamental Rayleigh waves for synthesizing the envelope. At lapse times later than 20,000 s–35,000 s, higher modes with phase velocities around 20 km/s become dominant. The transition time to the dominance of higher modes is found to become earlier for a deeper focus earthquake. The small coda attenuation factor from (1.90±0.23) × 10−3 to (2.38±0.32) × 10−3 estimated from later coda envelopes recorded at IRIS stations distributed worldwide also agrees with the attenuation factor of spheroidal modes according to PREM. We may interpret that higher mode waves are uniformly distributed at large lapse time due to large velocity dispersion and/or scattering and they dominate over the fundamental mode waves because of smaller attenuation in the lower mantle. The coda attenuation measurement proposed by Aki is found to be useful even for long periods and at very large lapse times.  相似文献   
276.
The chronology of deposits of the 1976 eruption of Augustine volcano, which produced pyroclastic falls, pyroclastic flows, and lava domes, is determined by correlating the stratigraphy with published records of seismicity, plume observations, and distant ash falls. Three thin air-fall ash beds (unit A1, A2 and A3) correlate with events near the beginning of the 1976 eruption on 22 and 23 January. On 24 January a small-volume, ash-cloud-surge deposit (unit S) accumulated over the north half of Augustine Island. A series of pumiceous pyroclastic flows represented by the lobate pumiceous deposits (unit F) occurred on 24 January and locally melted the snowpack to cause small pumice-laden floods. A thin ash bed (unit A4) was deposited on 24 January, and the main plinian eruption (unit P) occurred on 25 January. In middle to late February and again in mid April, lava domes were extruded at the summit accompanied by incandescent block-and-ash flows down the north flank. A hut near the north coast of the island was mechanically and thermally damaged by the small-volume ash-cloud surge of unit S before the eruption of the pumice flow of unit F; the metal roof was then penetrated by lithic fragments of the plinian fall of 25 January. Explosive eruptions in the early stage of an eruption-like that which deposited unit S — are important hazards at Augustine Island, as are infrequent debris avalanches and attendant tsunamis.deceased on 18 May 1980  相似文献   
277.
278.
We have applied a full-correlation analysis technique to the echo power fluctuations observed by the MU radar (35°N, 136°E), and analyzed the horizontal structure of the scattering pattern in the mesosphere as well as their horizontal motions. The velocity of the scattering pattern did not agree with the background wind velocity, but was associated with the horizontal propagating direction of a saturated inertia gravity wave identified in the wind field. The length of the long axis of the characteristic ellipse of the scattering pattern was approximately 50 km, and the direction was almost perpendicular to the propagating direction of the wave. The correlation time of the scattering pattern was approximately 700 s, which is much longer than the lifetime of the isolated turbulence itself. This implies that the observed scattering pattern is associated with a region where the saturated inertia gravity wave generates turbulence.  相似文献   
279.
On January 29ty, 1986, the third largest gas outburst in Japan took place at Sunagawa Coal Mine, which is the only hydraulic mine in Japan. It occurred at a face of a cross-cut, just after a coal seam was outcropped by blasting for drivage of the cross-cut. The site of the gas outburst was located 1,180 m below the surface. No workers were injured, but the cross-cut was plugged with 1,600 m3 of coal fragments extending over 100 m behind the face and 60,000 m3 of methane gas was emitted.The site of the gas outburst was investigated in detail to clarify the geological features. A normal and a reverse fault existed at the site. The area of the ejected zone was about 400 m2 and extended upward along the normal fault. The shape of the ejected zone suggests a great role of the normal fault on the gas outburst.Digital seismograms, recorded by a mine-wide seismic array at the coal mine, consisting of 27 microseismic events were used to investigate the gas outburst. Magnitude, seismic energy release, distribution of hypocenter and focal mechanism were analyzed. Taking the shape of the ejected zone together with results of the seismological investigation into consideration, it appears that the seismicity started with left-lateral faulting of the reverse fault and then right-lateral faulting of the normal fault followed. The faulting of the normal fault might be the direct cause and be the predominant mechanism of the gas outburst.Presented at the Fred Leighton Memorial Workshop on Mining Induced Seismicity, Montreal, Canada, August 30, 1987.  相似文献   
280.
The relation of magma and crustal activity has been studied from spatial distribution of 3He/4He ratios of gas and/or water samples over the Izu Peninsula, where significant crustal deformation associated with seismic swarm activities has been observed since 1970s. The air-corrected values of 3He/4He ratios ranged from 3.5 to 8.2 RA, where RA is the atmospheric 3He/4He ratio = 1.4 × 10? 6, indicating that helium is mostly of magmatic origin. Among the three pressure sources proposed to explain the crustal deformation, two inflation sources beneath the inland of northeast and the mid east coast of the Izu Peninsula locate in the broad distribution of high 3He/4He ratios, which supports relation of magma to the crustal uplift. In contrast, the distribution of 3He/4He ratios around the tensile fault assumed in the area of seismic swarms appears not to indicate existence of significant amount of magma below the tensile fault. Alternatively, the results suggest magma below a point several kilometers south of the tensile fault. The seismic swarms are explained either by fluid pressurization of thermal water heated by this magma or by intrusion of magma to the tensile fault moved obliquely from the deep magma reservoir.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号