首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   5篇
  国内免费   1篇
大气科学   13篇
地球物理   38篇
地质学   18篇
海洋学   9篇
天文学   18篇
综合类   2篇
自然地理   7篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   6篇
  2016年   8篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   6篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   6篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1993年   1篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
51.
The chronology of deposits of the 1976 eruption of Augustine volcano, which produced pyroclastic falls, pyroclastic flows, and lava domes, is determined by correlating the stratigraphy with published records of seismicity, plume observations, and distant ash falls. Three thin air-fall ash beds (unit A1, A2 and A3) correlate with events near the beginning of the 1976 eruption on 22 and 23 January. On 24 January a small-volume, ash-cloud-surge deposit (unit S) accumulated over the north half of Augustine Island. A series of pumiceous pyroclastic flows represented by the lobate pumiceous deposits (unit F) occurred on 24 January and locally melted the snowpack to cause small pumice-laden floods. A thin ash bed (unit A4) was deposited on 24 January, and the main plinian eruption (unit P) occurred on 25 January. In middle to late February and again in mid April, lava domes were extruded at the summit accompanied by incandescent block-and-ash flows down the north flank. A hut near the north coast of the island was mechanically and thermally damaged by the small-volume ash-cloud surge of unit S before the eruption of the pumice flow of unit F; the metal roof was then penetrated by lithic fragments of the plinian fall of 25 January. Explosive eruptions in the early stage of an eruption-like that which deposited unit S — are important hazards at Augustine Island, as are infrequent debris avalanches and attendant tsunamis.deceased on 18 May 1980  相似文献   
52.
Direct numerical simulations of an Ekman layer are performed to study flow evolution during the response of an initially neutral boundary layer to stable stratification. The Obukhov length, L, is varied among cases by imposing a range of stable buoyancy fluxes at the surface to mimic ground cooling. The imposition of constant surface buoyancy flux , i.e. constant-flux stability, leads to a buoyancy difference between the ground and background that tends to increase with time, unlike the constant-temperature stability case where a constant surface temperature is imposed. The initial collapse of turbulence in the surface layer owing to surface cooling that occurs over a time scale proportional to \(L/u_*\), where \(u_*\) is the friction velocity, is followed by turbulence recovery. The flow accelerates, and a “low-level jet” (LLJ) with inertial oscillations forms during the turbulence collapse. Turbulence statistics and budgets are examined to understand the recovery of turbulence. Vertical turbulence exchange, primarily by pressure transport, is found to initiate fluctuations in the surface layer and there is rebirth of turbulence through enhanced turbulence production as the LLJ shear increases. The turbulence recovery is not monotonic and exhibits temporal intermittency with several collapse/rebirth episodes. The boundary layer adjusts to an increase in the surface buoyancy flux by increased super-geostrophic velocity and surface stress such that the Obukhov length becomes similar among the cases and sufficiently large to allow fluctuations with sustained momentum and heat fluxes. The eventual state of fluctuations, achieved after about two inertial periods (\(ft \approx 4\pi \)), corresponds to global intermittency with turbulent patches in an otherwise quiescent background. Our simplified configuration is sufficient to identify turbulence collapse and rebirth, global and temporal intermittency, as well as formation of low-level jets, as in observations of the stratified atmospheric boundary layer.  相似文献   
53.
Boundary-Layer Meteorology - Known as the heat-mitigation effect, irrigated rice-paddy fields distribute a large fraction of their received energy to the latent heat during the growing season. The...  相似文献   
54.
In this paper, three methods for estimating soil evaporation in a bare field were evaluated: evaporation ratio method (k ratio), complementary relationship and bulk equation. Micro-lysimeters were used to measure the actual evaporation for validation of the three methods. For the k ratio method, pan evaporation was used as the reference evaporation instead of the value obtained from the Penman–Monteith equation. This result is important for areas where meteorological data are unavailable. The results showed that, for daytime evaporation, the k ratio and bulk equation produced a good fit with the observation data, while the complementary relationship generated a larger deviation from the measured data. We recommend that the k ratio method and bulk equation could be used to calculate daytime soil evaporation with high accuracy when soil water content and pan evaporation data or meteorological data are available, while the complementary relationship could be used for a rough estimation when pan evaporation is available. All the methods could be applied to calculate cumulative evaporation.  相似文献   
55.
Analytical data of rare earth elements (REEs) are presented for six new standard rock samples (JB-2, JB-3, JR-1, JR-2, JA-1, and JGb-1) issued by the Geological Survey of Japan. These data have been simultaneously determined by inductively coupled plasma atomic emission spectrometry.  相似文献   
56.
We present in this study the effects of short‐term heating on organics in the Tagish Lake meteorite and how the difference in the heating conditions can modify the organic matter (OM) in a way that complicates the interpretation of a parent body's heating extent with common cosmothermometers. The kinetics of short‐term heating and its influence on the organic structure are not well understood, and any study of OM is further complicated by the complex alteration processes of the thermally metamorphosed carbonaceous chondrites—potential analogues of the target asteroid Ryugu of the Hayabusa2 mission—which had experienced posthydration, short‐duration local heating. In an attempt to understand the effects of short‐term heating on chondritic OM, we investigated the change in the OM contents of the experimentally heated Tagish Lake meteorite samples using Raman spectroscopy, scanning transmission X‐ray microscopy utilizing X‐ray absorption near edge structure spectroscopy, and ultraperformance liquid chromatography fluorescence detection and quadrupole time of flight hybrid mass spectrometry. Our experiment suggests that graphitization of OM did not take place despite the samples being heated to 900 °C for 96 h, as the OM maturity trend was influenced by the heating conditions, kinetics, and the nature of the OM precursor, such as the presence of abundant oxygenated moieties. Although both the intensity of the 1s?σ* exciton cannot be used to accurately interpret the peak metamorphic temperature of the experimentally heated Tagish Lake sample, the Raman graphite band widths of the heated products significantly differ from that of chondritic OM modified by long‐term internal heating.  相似文献   
57.
Shimojo  Masumi  Kurokawa  Hiroki  Yoshimura  Keiji 《Solar physics》2002,206(1):133-142
We present a detailed study of coronal loop brightenings observed in an active region on the solar limb. These brightening loops show expanding and shrinking motions in EUV coronal line images and also show downflow along the loops in Lα and Hα images. By means of time-slice analysis of the images, we found that both the expanding and shrinking motions of the loops are not real motions of plasma but apparent motions like post-flare loops, where the loops at the different height are successively heated and cooled. From a temperature analysis, the time delay between the brightenings of hot 195 Å and cool Lα loops is found to be nearly equal to the time-scale of the conduction cooling. We conclude that these loop brightenings are sources of so called Hα coronal rains.  相似文献   
58.
The synthesis of organic molecules via chemical reactions within impact vapor plumes has been proposed as a mechanism to supply organics on a planet. However, the kinetics of chemical reactions within a rapidly expanding vapor plume or quenching process of the reactions has not been studied extensively. In this study, we constructed a new numerical model that calculates kinetics of the entire chemical reactions within an impact vapor plume. Numerical results revealed that the semi-analytical models proposed so far, in which the final amount of a chemical species was given by the equilibrium abundance at the quenching temperature of the fastest reaction path involving the species, underestimates the yield of organic molecules, such as HCN, by up to a factor of 10. This is because the previously used assumption that a species can achieve equilibrium with the rest of the reaction system via the fastest reaction path involving the species is not necessarily valid. Our analysis of the high-temperature H/C/N/O reaction system suggests that the quenching of slow reactions divides the reaction network into smaller reaction sub-systems isolated from the rest of the reaction system. Then, the fastest reaction path cannot equilibrate an isolated reaction sub-system with the rest of the reaction system. Simulation of this actual disequilibrium mechanism requires a simultaneous numerical calculation of the entire reaction network, which is equivalent to conducting a full kinetic model calculation, such as our model. Our numerical code makes it possible to discuss quantitatively the impact chemistry for various situations, such as the Galilean satellites. In this study, our numerical model is applied to the delivery of organic molecules via cometary impact on the Galilean satellites. Our numerical results indicate that small-particle impacts would produce HCN efficiently. Resulting HCN may freeze out immediately and be deposited on satellite surfaces, where it may be eventually converted into complex organics via irradiation of charged particle. On the other hand, large-size impacts may form transient CH4-N2 atmospheres, in which complex organics (tholin) may be formed via energy deposition of UV and/or charged particle. Resulting complex organics may subsequently precipitate on the satellite surfaces without clear correlation with the locations of impact craters. Such distribution of complex organics created by chemical reactions within vapor plumes due to cometary impacts may explain an absorption (4.57 μm) on Galilean satellites nonassociated with observable (moderate- and large-size) impact craters.  相似文献   
59.
The tonalite-trondhjemite-granite (TTG) crust has been considered to be buoyant and hence impossible to be subducted into the deep mantle. However, recent studies on the juvenile arc in the western Pacific region indicate that immature island arcs subduct into the deep mantle in most cases, except in the case of parallel arc collision. Moreover, sediment trapped subduction and tectonic erosion are also common. This has important implications in evaluating the role of TTG crust in the deep mantle and probably on the bottom of the mantle. Because the TTG crust is enriched in K, U and Th, ca. 20 times more than that of CI chondrite, the accumulated TTG on the Core Mantle Boundary (CMB) would have played a critical role to initiate plumes or superplumes radiating from the thermal boundary layer, particularly after 2.0 Ga, related to the origin of superplume-supercontinent cycle. This is because selective subduction of oceanic lithosphere including sediment-trapped subduction, tectonic erosion and arc- and microcontinent-subduction proceeded under the supercontinent before the final amalgamation ca. 200-300 million years after the formation of the nuclei. We speculate the mechanism of superplume evolution through the subduction of TTG-crust and propose that this process might have played a dominant role in supercontinent breakup.  相似文献   
60.
A shock-wave compression experiment using synthesized silica gel was investigated as a model for a comet impact event on the Earth’s surface. The sample shocked at 20.7 GPa showed considerable structural changes, a release of water molecules, and the dehydration of silanol (Si–OH) that led to the formation of a new Si–O–Si network structure containing larger rings (e.g., six-membered ring of SiO4 tetrahedra). The high aftershock temperature at 20.7 GPa, which could be close to 800 °C, influenced the sample structure. However, some silanols, which were presumed to be the mutually hydrogen-bonded silanol group, remained at pressures >20.7 GPa. This type of silanol along with a small number of water molecules may remain even after shock compression at 30.9 GPa, although the intermediate structure of the sample recovered was similar to that of silica glass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号