Concentration ratios of Hf, Zr, and REE between zircon, apatite, and liquid were determined for three igneous compositions: two andesites and a diorite. The concentration ratios of these elements between zircon and corresponding liquid can approximate the partition coefficient. Although the concentration ratios between apatite and andesite groundmass can be considered as partition coefficients, those for the apatite in the diorite may deviate from the partition coefficients. The HREE partition coefficients between zircon and liquid are very large (100 for Er to 500 for Lu), and the Hf partition coefficient is even larger. The REE partition coefficients between apatite and liquid are convex upward, and large (D=10–100), whereas the Hf and Zr partition coefficients are less than 1. The large differences between partition coefficients of Lu and Hf for zircon-liquid and for apatite-liquid are confirmed. These partition coefficients are useful for petrogenetic models involving zircon and apatite. 相似文献
Abstract. The petrography, chemical, fluid inclusion and isotope analyses (O, Rb-Sr) were conducted for the shale samples of the Mount McRae Shale collected from the Tom Price, Newman, and Paraburdoo mines in the Hamersley Basin, Western Australia. The Mount McRae Shale at these mines occurs as a footwall unit of the secondary, hematite-rich iron ores derived from the Brockman Iron Formation, one of the largest banded iron formations (BIFs) in the world. Unusually low contents of Na, Ca, and Sr in the shales suggest that these elements were leached away from the shale after deposition. The δ18O (SMOW) values fall in the range of + 15.0 to +17.9 per mil and show the positive correlation with calculated quartz/sericite ratios of the shale samples. This suggests that the oxygen isotopic compositions of shale samples were homogenized and equilibrated by postdepositional event. The pyrite nodules hosted by shales are often rimmed by thin layers of silica of varying crystallinity. Fluid inclusions in quartz crystals rimming a pyrite nodule show homogenization temperatures ranging from 100 to 240C for 47 inclusions and salinities ranging from 0.4 to 12.3 wt% NaCl equivalent for 18 inclusions. These fluid inclusion data give direct evidence for the hydrothermal activity and are comparable to those of the vein quartz collected from the BIF-derived secondary iron ores (Taylor et al, 2001). The Rb-Sr age for the Mount McRae Shale is 1,952 ± 289 Ma and at least 200 million years younger than the depositional age of the Brockman Iron Formation of ∼ 2.5 Ga in age. All the data obtained in this study are consistent with the suggestion that high temperature hydrothermal fluids were responsible for both the secondary iron ore formation and the alteration of the Mount McRae Shale. 相似文献
Agro-meteorological hazards such as drought, waterlogging and cool summer occur with very high frequency and affect maize production and social-economic development in the maize-growing region of Songliao Plain, China. Moreover, both the frequency of these hazards and loss from them are considered to be increasing with global warming. The purpose of this paper is to quantitatively analyze the relationships between the fluctuation of maize yield and drought, waterlogging and cool summer, and to evaluate the consequences of these hazards in the maize-growing area of Songliao Plain, taking Lishu county as a case study area based on GIS (Geographic Information System). Crop yield-climate analysis and regression analysis were employed to analyze and quantify relationships between the fluctuation of maize yield and drought, waterlogging and cool summer, and to evaluate the consequences of these hazards. The parameters and model of damage evaluation were presented using weighted comprehensive analysis, and the degree of damage of drought, waterlogging and cool summer to maize production was comprehensively evaluated and regionalized. It is shown that from 1949 to 1990, the negative value years of the fluctuation of maize yield due to meteorological hazards accounted for 55% of seasons, of which 14% was caused by drought, 30% by waterlogging, 4% by cool summer and drought, 9% by cool summer and waterlogging, 13% by drought and waterlogging, 30% by drought, waterlogging and cool summer. Studies on the instability and spatial variation of the fluctuations in maize yield in Lishu county showed that the middle plains are stable areas to climatic influence, while southeastern hills and low mountains, the low lands of the plains along the East Liao River and the western plain are unstable areas in terms of areas in maize yield. The synthetic index of the degree of damage to maize of drought, waterlogging and cool summer showed a strong positive correlation with the ratio of the amount damaged to the normal yield of maize. This suggests that this index can be used to evaluate such damage. The degree of damage of drought, waterlogging and cool summer to maize in Lishu county shows the regional characteristics, which increase gradually from the center to the west and east, this being almost identical with the spatial distribution of the fluctuation of maize yield due to these hazards. This study can be expected to provide the basis for developing strategies to mitigate agro-meteorological hazards and reducing the losses from them, and adjust the medium and long-term distribution of agricultural activities so as to adapt to environmental changes. 相似文献
The South Kitakami Massif is one of the oldest geological domains in Japan having Silurian strata with acidic pyroclastic rocks and Ordovician–Silurian granodiorite–tonalite basement, suggesting that it was matured enough to develop acidic volcanisms in the Silurian period. On the northern and western margin of the South Kitakami Massif, an Ordovician arc ophiolite (Hayachine–Miyamori Ophiolite) and high‐pressure and low‐temperature metamorphic rocks (Motai metamorphic rocks) exhumed sometime in the Ordovician–Devonian periods are distributed. Chronological, geological, and petrochemical studies on the Hayachine–Miyamori Ophiolite, Motai metamorphic rocks, and other early Paleozoic geological units of the South Kitakami Massif are reviewed for reconstruction of the South Kitakami arc system during Ordovician to Devonian times with supplementary new data. The reconstruction suggests a change in the convergence polarity from eastward‐ to westward‐dipping subduction sometime before the Late Devonian period. The Hayachine–Miyamori Ophiolite was developed above the eastward‐dipping subduction through three distinctive stages. Two separate stages of overriding plate extension inducing decompressional melting with minor involvement of slab‐derived fluid occurred before and after a stage of melting under strong influence of slab‐derived fluids. The first overriding plate extension took place in the back‐arc side forming a back‐arc basin. The second one took place immediately before the ophiolite exhumation and near the fore‐arc region. We postulate that the second decompressional melting was triggered by slab breakoff, which was preceded by slab rollback inducing trench‐parallel wedge mantle flow and non‐steady fluid and heat transport leaving exceptionally hydrous residual mantle. The formation history of the Hayachine–Miyamori Ophiolite implies that weaker plate coupling may provide preferential conditions for exhumation of very hydrous mantle. Very hydrous peridotites involved in arc magmatism have not yet been discovered except for in the Cambrian–Ordovician periods, suggesting its implications for global geodynamics, such as the thermal state and water circulation in the mantle. 相似文献
The rotation of the surface layer of the Sun is found to have been accelerated secularly from the sunspot data of 1943 to 1986. To represent the overall state of rotation of the differentially rotating Sun, we define an indexM, by integrating the angular momentum density over the whole surface of the Sun, and call it the angular momentum layer density. The indexM increased monotonically or secularly from 1943 to 1986. This period corresponds to solar cycles 18, 19, 20, and 21. The monotonic increase ofM indicates that a net angular momentum must have steadily been coming from the layer down below the surface. The differential rotation latitudinal dependence profile did not change much from cycle 18 to cycle 20, but at cycle 21 the degree of equatorial acceleration dropped. This aspect is discussed in the context of the 55-year grand cycle. Cycle 21 is the start of grand cycle VI. The latitudinal dependence is less steep at cycle 21. The time scale of secular change of the indexM reflects the time scale of change of linkage of the surface and the deep layer in form of the angular momentum transfer, and that the time scale of the profile change of the differential rotation reflects the time scale of the angular momentum transfer within the surface layer. 相似文献
This paper shows an effective implementation of the half-plane Green function for surface strip impulses (Lamb's problem), which was previously developed in a closed form by the authors, into the time-domain boundary element method for the analysis of related initial boundary value problems. The time-stepping algorithm utilizing Heaviside step function makes the solution process free from the Rayleigh wave front singularity. Illustrative analyses performed include that: First, the response due to an impulsive uniform strip loading is dealt with in order to check the accuracy of the present solution and to interpret the associated wave motion in the medium. Second, a rigid massless strip surface foundation is analysed when subjected to various impulsive loadings in vertical, horizontal and rotational directions to observe which wave is most concerned with the respective foundation motion. The field response is also of interest with respect to distance attenuation. Third, the dynamic cross-interaction between active and passive foundations through soil is investigated when multiple strip foundations are placed separately on a half-space with a certain distance. 相似文献
Summary Major and trace element data are presented for four alkali gabbroic inclusions, two monzonitic inclusions, and nine syenitic inclusions from Ulreung island, Korea. Analytical results are also given for the mineral constituents. Although the major element chemistry suggests that the plutonic inclusions are comagmatic with the associated volcanic rocks, the trace element data demonstrate that they do not represent a simple liquid line of descent. In addition, the mineralogical data indicate that they are not likely to represent cumulates on the floor of the magma chamber from which the observed volcanic rocks have been derived. Titanbiotite crystallization preceded kaersutite crystallization in the plutonic rocks but that order was inverse in the volcanic rocks. The trachytic-phonolitic rocks contain Fe-rich olivine phenocrysts, whereas the plutonic inclusions do not. These discrepancies can be accounted for by the assumption that the investigated plutonic rocks represent some cumulus parts of intrusive bodies solidified at shallower depth than the magma reservoir beneath the island. Petrographic features of the gabbroic inclusions are suggestive that olivine was probably in a reaction relationship with liquid to form titanbiotite. Comparison with petrological data of the volcanic rocks also implies that olivine was in a reaction relationship with an intermediate alkalic magma in both the intruded magmas at shallow depth and in the magma chamber at great depth. This is the cause of the olivine compositional gap in the high-K volcanic suite. Titanbiotite is a major reaction product.
Plutonische Einschlüsse und Olivine in Kalium-reichen Vulkaniten von Ulreung Island, Korea
Zusammenfassung Haupt- und Spurenelementdaten von vier alkalischen gabbroiden, zwei monzonitische Haupt- und Spurenelementdaten von vier alkalischen gabbroiden, zwei monzonitische und neun syenitischen Einschlüssen von Ulreung Island, Korea, sowie analytische Daten der Mineralkomponenten werden vorgelegt. Obwohl der Hauptelementchemismus andeutet, daß die plutonischen Intrusionen und die vergesellschafteten vulkanischen Gesteine comagmatisch sind, zeigen die Spurenelementdaten, daß diese nicht eine einfache Magmenlinie darstellen. Außerdem zeigen die mineralogischen Daten an, daß die Gesteine wahrscheinlich keine Kumulate vom Boden der Magmenkammer sind, von welcher die beobachteten vulkanischen Gesteine herstammen. In den plutonischen Gesteinen kristallisierte Titan-Biotit früher als der Kaersutit. In den vulkanischen Gesteinen ist diese Reihenfolge jedoch umgekehrt. Die trachitischen/phonolitischen Gesteine enthalten im Gegensatz zu den plutonischen Einschlüssen Fe-reiche Olivin-Phenokrysten. Diese Unterschiede können durch die Annahme erklärt werden, daß die untersuchten plutonischen Gesteine bestimmte Kumulate eines intrusiven Körpers sind, der in geringerer Tiefe als das Magmenreservoir unterhalb der Inseln erstarrte. Petrographische Kennzeichen von gabbroischen Einschlüssen deuten darauf hin, daß der Olivin wahrscheinlich mit der Schmelze reagiert hat und Titan-Biotit bildete. Ein Vergleich der petrographischen Daten der vulkanischen Gesteine Vergleich der petrographischen Daten der vulkanischen Gesteine läßt ebenfalls den Schluß zu, daß Olivin mit einem intermediären alkalischen Magma in beiden, dem intrudierten Magma in geringer Tiefe und der Magmakammer in großer Tiefe, reagierte. Dies ist der Grund für die Lücke in der Olivinzusammensetzung in der Kalium-reichen vulkanischen Suite. Titan-Biotit ist ein Hauptreaktionsprodukt.
The ratio of 87Sr/86Sr was measured from different water samples of thermal/mineral (hot spring as well as crater lake) and meteoric origins, in order to specify the location and to verify the detailed model of a volcano-hydrothermal system beneath Zao volcano. The ratio showed a trimodal distribution for the case of thermal/mineral water: 0.7052–0.7053 (Type A, Zao hot spring), 0.7039–0.7043 (Type B, Okama crater lake and Shin-funkiko hot spring), and 0.7070–0.7073 (Type C, Gaga, Aone, and Togatta hot springs), respectively. However, in comparison, the ratio was found to be higher for meteoric waters (0.7077–0.7079). The water from the central volcanic edifice (Type B) was found to be similar to that of nearby volcanic rocks in their Sr isotopic ratio. This indicates that the Sr in water was derived from shallow volcanic rocks. The 87Sr/86Sr ratio for water from the Zao hot spring (Type A) was intermediate between those of the pre-Tertiary granitic and the Quaternary volcanic rocks, thus suggesting that the water had reacted with both volcanic and granitic rocks. The location of the vapor–liquid separation was determined as the boundary of the pre-Tertiary granitic and the Quaternary volcanic rocks by comparing the results of this strontium isotopic study with those of Kiyosu and Kurahashi [Kiyosu, Y., Kurahashi, M., 1984. Isotopic geochemistry of acid thermal waters and volcanic gases from Zao volcano in Japan. J. Volcanol. Geotherm. Res. 21, 313–331.]. 相似文献
Abstract The 1995 Kobe (Hyogo-ken Nanbu) earthquake (MJMA 7.2, Mw 6.9) occurred on Jan. 17, 1995, at a depth of 17 km, beneath the areas of southern part of Hyogo prefecture and Awaji Island. To investigate P-wave velocity distribution and seismological characteristics in the aftershock area of this great earthquake, a wide-angle and refraction seismic exploration was carried out by the Research Group for Explosion Seismology (RGES) . The profile including 6 shot points and 205 observations was 135 km in length, extending from Keihoku, Northern Kyoto prefecture, through Kobe, to Seidan on Awaji Island. The charge of each shot was 350–700 kg. The P-wave velocity structure model showed a complicated sedimentary layer which is shallower than 2.5 km, a 2.5 km-thick basement layer whose velocity is 5.5 km/s, overlying the crystalline upper crust, and the boundary between the upper and lower crust. Almost all aftershock hypocenters were located in the upper crust. However, the structure model suggests that the hypocenters of the main shock and some aftershock clusters were situated deeper than the boundary between the upper and lower crust. We found that the P-velocity in the upper crust beneath the northern part of Awaji Island is 5.64 km/s which is 3% lower than that of the surrounding area. The low-velocity zone coincides with the region where the high stress moment release was observed. 相似文献
This study proposes a probabilistic methodology for estimating the business interruption loss of industrial sectors as an extension of current methodology. The functional forms and parameters are selected and calibrated based on survey data obtained from businesses located in the inundated area at the time of the 2000 Tokai Heavy Rain in Japan. The Tokai Heavy Rain was a rare event that hit a densely populated and industrialized area. In the estimation of business interruption losses, functional fragility curves and accelerated failure time models are selected to estimate the extent of damage to production capacity and production recovery time. Significant explanatory variables, such as inundation depth, distinct vulnerability, and the resilience characteristics of each sector, as well as the accuracy of fit of the model, are analyzed in the study. The function obtained and the estimated parameters can be utilized as benchmarks in estimating the probabilistic distribution of business interruption losses, especially in the case of urban flood disasters.