首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   1篇
测绘学   8篇
大气科学   14篇
地球物理   25篇
地质学   16篇
海洋学   6篇
天文学   10篇
自然地理   7篇
  2023年   1篇
  2018年   2篇
  2016年   7篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   2篇
  2011年   7篇
  2010年   5篇
  2009年   2篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2002年   3篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   3篇
  1990年   5篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1974年   2篇
  1973年   1篇
  1971年   2篇
  1960年   1篇
排序方式: 共有86条查询结果,搜索用时 46 毫秒
21.
A calorimetric study of the ilmenite and lithium niobate polymorphs of FeTiO3 was undertaken to assess the high-pressure stabilities of these phases. Ilmenite is known to be the stable phase at ambient pressure, but the lithium niobate form may be a quench phase from a perovskite form which has been previously observed in situ at high pressure.In this study, the lithium niobate phase of FeTiO3 was synthesized from an ilmenite starting material at 15– 16 GPa and 1473 K, using a uniaxial split-sphere high-pressure apparatus (USSA 2000). The energetics of the ilmenite to lithium niobate transformation were investigated through transposed-temperature drop calorimetry. The heat of back-transformation of lithium niobate to ilmenite was measured by dropping the sample in argon from ambient conditions to a temperature where the transformation occurs spontaneously. In drops made at 977 K, an intermediate x-ray amorphous phase was encountered. At 1273 K, the transformation went to completion. A value of -13.5±1.2 kJ/mol was obtained for the heat of transformation.  相似文献   
22.
23.
Rotational Modulation of Microwave Solar Flux   总被引:1,自引:0,他引:1  
Time series data of 10.7 cm solar flux for one solar cycle (1985–1995 years) was processed through autocorrelation. Rotation modulation with varying persistence and period was quite evident. The persistence of modulation seems to have no relation with sunspot numbers. The persistence of modulation is more noticeable during 1985–1986, 1989–1990, and 1990–1991. In other years the modulation is seen, but its persistence is less. The sidereal rotation period varies from 24.07 days to 26.44 days with no systematic relation with sunspot numbers. The results indicate that the solar corona rotates slightly faster than photospheric features. The solar flux was split into two parts, i.e., background emission which remains unaffected by solar rotation and the localized emission which produces the observed rotational modulation. Both these parts show a direct relation with the sunspot numbers. The magnitude of localized emission almost diminishes during the period of low sunspot number, whereas background emission remains at a 33% level even when almost no sunspots may be present. The localized regions appear to shift on the solar surface in heliolongitudes.  相似文献   
24.
25.
26.
Radar sensors can be used for large-scale vegetation mapping and monitoring using backscattering coefficients in different polarizations and wavelength bands. C-band space borne SAR is widely used for the classification of agricultural crops, but can only perform a limited discrimination of various tree species. This paper presents the results of discrimination between mustard crop and babul plantation (Prosopis sp.) using quad polarisation Radarsat 2 and ALOS PALSAR data. Study area is comprised of dense babul plantation along the canal, mustard crop on one side of the canal and Fallow land near to Ramgarh village of Jaisalmer district. Three bands of Radarsat (HH, HV and VV) acquired during peak mustard crop growth stage were integrated with four polarizations (HH, HV, VH and VV) of ALOS PALSAR acquired when crop cover was absent. Using only Radarsat data Jefferies-Matusita (JM) separability between mustard crop and babul plantation was found to be poor (710). Where as in the seven band combination the separability was observed to be high (1374). Among the different polarizations three layer combination, highest separability was observed using cross polarizations (HV and VH) of L-band with any one of the Radarsat Polarisation (HH/HV/VV). This combination of C- and L-band resulted in easy separation of mustard and babul plantation which was otherwise difficult using only Radarsat data.  相似文献   
27.
CyberShake: A Physics-Based Seismic Hazard Model for Southern California   总被引:2,自引:0,他引:2  
CyberShake, as part of the Southern California Earthquake Center??s (SCEC) Community Modeling Environment, is developing a methodology that explicitly incorporates deterministic source and wave propagation effects within seismic hazard calculations through the use of physics-based 3D ground motion simulations. To calculate a waveform-based seismic hazard estimate for a site of interest, we begin with Uniform California Earthquake Rupture Forecast, Version 2.0 (UCERF2.0) and identify all ruptures within 200?km of the site of interest. We convert the UCERF2.0 rupture definition into multiple rupture variations with differing hypocenter locations and slip distributions, resulting in about 415,000 rupture variations per site. Strain Green Tensors are calculated for the site of interest using the SCEC Community Velocity Model, Version 4 (CVM4), and then, using reciprocity, we calculate synthetic seismograms for each rupture variation. Peak intensity measures are then extracted from these synthetics and combined with the original rupture probabilities to produce probabilistic seismic hazard curves for the site. Being explicitly site-based, CyberShake directly samples the ground motion variability at that site over many earthquake cycles (i.e., rupture scenarios) and alleviates the need for the ergodic assumption that is implicitly included in traditional empirically based calculations. Thus far, we have simulated ruptures at over 200 sites in the Los Angeles region for ground shaking periods of 2?s and longer, providing the basis for the first generation CyberShake hazard maps. Our results indicate that the combination of rupture directivity and basin response effects can lead to an increase in the hazard level for some sites, relative to that given by a conventional Ground Motion Prediction Equation (GMPE). Additionally, and perhaps more importantly, we find that the physics-based hazard results are much more sensitive to the assumed magnitude-area relations and magnitude uncertainty estimates used in the definition of the ruptures than is found in the traditional GMPE approach. This reinforces the need for continued development of a better understanding of earthquake source characterization and the constitutive relations that govern the earthquake rupture process.  相似文献   
28.
29.
We present a well behaved class of Charge Analogue of Heintzmann (Z. Phys. 228:489, 1969) solution. This solution describes charge fluid balls with positively finite central pressure and positively finite central density ; their ratio is less than one and causality condition is obeyed at the centre. The outmarch of pressure, density, pressure-density ratio and the adiabatic speed of sound is monotonically decreasing, however, the electric intensity is monotonically increasing in nature. The solution gives us wide range of constant K (1.25≤K≤15) for which the solution is well behaved and therefore, suitable for modeling of super dense star. For this solution the mass of a star is maximized with all degrees of suitability and by assuming the surface density ρ b =2×1014 g/cm3. Corresponding to K=1.25 and X=0.42, the maximum mass of the star comes out to be 3.64M Θ with linear dimension 24.31 km and central redshift 1.5316.  相似文献   
30.
While steady thruster jets caused only modest surface erosion during previous spacecraft landings on the Moon and Mars, the pulsed jets from the Phoenix spacecraft led to extensive alteration of its landing site on the martian arctic, exposed a large fraction of the subsurface water ice under the lander, and led to the discovery of evidence for liquid saline water on Mars. Here we report the discovery of the ‘explosive erosion’ process that led to this extensive erosion. We show that the impingement of supersonic pulsed jets fluidizes porous soils and forms cyclic shock waves which propagate through the soil and produce erosion rates more than an order of magnitude larger than that of other jet-induced processes. The understanding of ‘explosive erosion’ allows the calculation of bulk physical properties of the soils altered by it, provides insight into a new behavior of granular flow at extreme conditions and explains the rapid alteration of the Phoenix landing site’s ground morphology at the northern arctic plains of Mars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号