首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   4篇
  国内免费   1篇
测绘学   2篇
大气科学   14篇
地球物理   45篇
地质学   25篇
海洋学   60篇
天文学   14篇
综合类   3篇
自然地理   11篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   6篇
  2013年   5篇
  2012年   6篇
  2011年   6篇
  2010年   7篇
  2009年   1篇
  2008年   9篇
  2007年   8篇
  2006年   6篇
  2005年   3篇
  2004年   8篇
  2003年   4篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   5篇
  1993年   1篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1988年   5篇
  1987年   3篇
  1986年   8篇
  1985年   3篇
  1984年   5篇
  1983年   6篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   5篇
  1975年   4篇
  1972年   2篇
排序方式: 共有174条查询结果,搜索用时 574 毫秒
111.
Already today, the functionality of many sewer and storm water systems are not up to the required standards and consequently flooding problems are experienced in case of heavy storms. System upgrades are required, which are however complicated by the expected future increase in short-term rainfall intensities as a result of climate change. In this case study, focusing on the town of Arvika, Sweden, this issue is investigated in three main steps. In the first, extreme value analyses of 30-min rainfall from an ensemble of climate projections are carried out to estimate the future increase and generate a future design storm. In the second, the existing system’s response to both today’s and future design storms are simulated by a coarse sewer model setup (MOUSE) and a detailed coupled surface-sewer model setup (TSR). In the third and final step, system upgrades are designed and evaluated by both models. The results indicate an increase by 10–30 % of today’s short-term rainfall extremes by the end of the century. Upgrading the system to achieve a satisfactory performance for the future design storm would cost approximately twice as much as an upgrade based on today’s design storm.  相似文献   
112.
113.
In this the second of a two-part study, we examine the physical mechanisms responsible for the increasing contrast of the land–sea surface air temperature (SAT) in summertime over the Far East, as observed in recent decades and revealed in future climate projections obtained from a series of transient warming and sensitivity experiments conducted under the umbrella of the Coupled Model Intercomparison Project phase 5. On a global perspective, a strengthening of land–sea SAT contrast in the transient warming simulations of coupled atmosphere–ocean general circulation models is attributed to an increase in sea surface temperature (SST). However, in boreal summer, the strengthened contrast over the Far East is reproduced only by increasing atmospheric CO2 concentration. In response to SST increase alone, the tropospheric warming over the interior of the mid- to high-latitude continents including Eurasia are weaker than those over the surrounding oceans, leading to a weakening of the land–sea SAT contrast over the Far East. Thus, the increasing contrast and associated change in atmospheric circulation over East Asia is explained by CO2-induced continental warming. The degree of strengthening of the land–sea SAT contrast varies in different transient warming scenarios, but is reproduced through a combination of the CO2-induced positive and SST-induced negative contributions to the land–sea contrast. These results imply that changes of climate patterns over the land–ocean boundary regions are sensitive to future scenarios of CO2 concentration pathways including extreme cases.  相似文献   
114.
The role of anthropogenic forcings in temperature changes during recent decades is investigated over a range of spatial scales. Changes in the annual mean surface temperature and also in the warmest night of the year, which has implications for human health, are considered. Distributions of regional trends with and without the effect of human activity are produced, using constraints from a global optimal detection analysis. Anthropogenic forcings are estimated to have more than doubled the likelihood of mean warming in all regions considered except central North America, where results are more model dependent. The likelihood of warming of the warmest night has also increased, but the estimated change is more uncertain. Inferences on sub-continental scales are indicative rather than definitive because of the absence of locally important forcings and processes in model simulations, as well as model biases. As model inconsistencies may impact regional analyses, a multi-model approach is essential.  相似文献   
115.
We report new palaeointensity results concerning the Auckland geomagnetic excursions using the double heating technique of the Shaw method with low temperature demagnetisation (LTD-DHT Shaw method). The excursional palaeodirections recorded in six volcanoes of the Auckland volcanic field, New Zealand, have been classified into three groups: north-down (ND), west-up (WU) and south-up (SU) directions. In the present study, five to six consistent palaeointensities have been obtained from each of five volcanoes recording the Auckland geomagnetic excursions. The Wiri (27 ka), Crater Hill and Puketutu volcanoes (ND group) yielded mean palaeointensities of 10.6 ± 1.2 (1σ), 11.8 ± 2.8 and 11.1 ± 0.4 μT, respectively. The Hampton Park volcano (55 ka; WU group) gave 9.5 ± 1.2 μT while the McLennan Hills volcano (SU group) gave 2.5 ± 0.5 μT. It is notable that consistent palaeointensities have been obtained from the three different volcanoes which have almost the same palaeodirections (ND group), possibly supporting the reliability of the palaeointensity data. These five palaeointensities for the Auckland geomagnetic excursions correspond to virtual dipole moments (VDMs) of 0.6-2.1 × 1022 A m2, whereas three mean palaeointensities obtained from the Auckland volcanoes having non-excursional palaeodirections are 13.1-40.0 μT giving stronger VDMs of 2.1-6.9 × 1022 A m2. These results suggest that the dipole component of the geomagnetic field reduced to about 2 × 1022 A m2 or less during the Auckland geomagnetic excursions.  相似文献   
116.
This paper is concerned with testing the validity of the ground motions estimated by combining a boundary integral equation method to simulate dynamic rupture along finite faults with a finite difference method to compute the subsequent wave propagation. The validation exercise is conducted by comparing the calculated ground motions at about 100 hypothetical stations surrounding the pure strike-slip and pure reverse faults with those estimated by recent ground motion estimation equations derived by regression analysis of observed strong-motion data. The validity of the ground motions with respect to their amplitude, frequency content and duration is examined. It is found that the numerical simulation method adopted leads to ground motions that are mainly compatible with the magnitude and distance dependence modelled by empirical equations but that the choice of a low stress drop leads to ground motions that are smaller than generally observed. In addition, the scatter in the simulated ground motions, for which a laterally homogeneous crust and standard rock site were used, is of the same order as the scatter in observed motions therefore, close to the fault, variations in source propagation likely contribute a significant proportion of the scatter in observed motions in comparison with travel-path and site effects.  相似文献   
117.
In this short article, the possible reduction in the standard deviation of empirical ground motion estimation equations through the modelling of the effect of crustal structure is assessed through the use of ground-motion simulations. Simulations are computed for different source-to-site distances, focal depths, focal mechanisms and for crustal models of the Pyrenees, the western Alps and the upper Rhine Graben. Through the method of equivalent hypocentral distance introduced by Douglas et al. [(2004) Bull Earthquake Eng 2(1): 75–99] to model the effect of crustal structure in empirical equations, the scatter associated with such equations derived using these simulated data could be reduced to zero if real-to-equivalent hypocentral distance mapping functions were derived for every combination of mechanism, depth and crustal structure present in the simulated dataset. This is, obviously, impractical. The relative importance of each parameter in affecting the decay of ground motions is assessed here. It is found that variation in focal depth is generally more important than the effect of crustal structure when deriving the real-to-equivalent hypocentral distance mapping functions. In addition, mechanism and magnitude do not have an important impact on the decay rate.  相似文献   
118.
We conducted hydrographic observations in 2002 to investigate the anticyclonic eddy that emerges every summer in Funka Bay, Hokkaido, Japan, and elucidate dynamical structure and wind-driven upwelling within the eddy. The anticyclonic eddy has a vertical scale of 32 m and is characterized by a strong baroclinic flow and a sharp pycnocline with a concave isopycnal structure. The sharp pycnocline occurs below a warm and relatively low-salinity water termed summer Funka Bay water (FS), which is formed by heating from solar radiation and dilution from river discharge in summertime Funka Bay. Flow of the anticyclonic eddy rotates as a rigid body at each layer, and the horizontal scale and rotation period of the eddy in the surface layer are about 15 km and 2.2 days, respectively. The dynamical balance of the anticyclonic eddy is well explained by the gradient flow balance. The contribution of centrifugal force to the gradient flow balance is about 27%. Therefore, the effect of the nonlinear term associated with centrifugal force cannot be neglected in considering the dynamics of the anticyclonic eddy in summertime Funka Bay. In addition, upwelling of subsurface water was observed in the surface layer of the central part of the eddy. The formation mechanism of this upwelling is consistent with interaction between horizontal uniform wind and the eddy. This upwelling is driven by upward Ekman pumping velocity related to the horizontal divergence of Ekman transport. In summertime Funka Bay, there are two wind effects that affect the anticyclonic eddy: a decay effect of the upwelling of subsurface water resulting from horizontal uniform wind (mainly northwesterly wind), and a maintenance or spin-up effect of horizontal non-uniform wind (mainly southerly–southeasterly seasonal wind) with negative wind stress curl.  相似文献   
119.
Summary We have developed an absolute gravimeter with a rotating vacuum pipe. The rotating vacuum pipe has an angular velocity high enough to keep a falling object to the end of it, where the falling object begins to drop by stopping the pipe vertical. We put a Michelson interferometer with a stabilized He-Ne laser under the vacuum pipe to measure the position of the falling object at every 1 ms synchronized with a rubidium frequency standard. This absolute gravimeter has succeeded in the measurements with a drop-to-drop scatter of 1.9 × 10–7ms–2 (19µGal) at the Esashi Gravity Station in the end of 1989 and also has succeeded in the continuous measurements for a week at the same place in December 1991. During the three-year experiments, the measured gravity values have gradually increased until the end of 1991 and then gained in the rate of increase, although we cannot deny the possibility of instrumental origin. The comparisons with other types of absolute gravimeters showed that the values obtained by the absolute gravimeter with a rotating vacuum pipe are close to those obtained by the absolute gravimeters ILOM#1 and NAOM#2 and are lower than those obtained by JILA#4, though the times of comparisons are different.  相似文献   
120.
Experiments were conducted to estimate heaving pressures of saturated soil partially frozen in a closed system. Temperatures at both ends of a specimen were kept constant, i.e., positive at the top and negative at the bottom. When the overburden pressure P was maintained at a constant value, the pore-water pressure Pw, which showed a certain value before freezing, decreased gradually as freezing progressed, finally attaining a specific value, whereafter the specimen ceased taking water into it. The pressure difference between P and Pw, at this stage was defined as the upper limit of heaving pressure σu, which evidently depended on the temperature θc of the cooling end, in accordance with the relation: σu = −11.4 θc (kg/cm2)

It corresponds to the modified Clausius-Clapeyron's formula, which gives the freezingpoint depression of an ice—water system, where the pressure acting on the ice differs from that on the water. This is the same as the value obtained by Radd and Oertle (1973). It is considered, however, that, when θc lowers, the value of θu reaches finally a constant value smaller than the one obtained by the above equation. Denoted by σu max, it was defined as a maximum heaving pressure. The value of σu max depended on soil type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号