首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   12篇
  国内免费   2篇
测绘学   3篇
大气科学   8篇
地球物理   48篇
地质学   57篇
海洋学   42篇
天文学   8篇
综合类   1篇
自然地理   15篇
  2022年   3篇
  2021年   6篇
  2020年   7篇
  2019年   3篇
  2018年   5篇
  2017年   11篇
  2016年   6篇
  2015年   6篇
  2014年   7篇
  2013年   6篇
  2012年   6篇
  2011年   12篇
  2010年   7篇
  2009年   4篇
  2008年   7篇
  2007年   8篇
  2006年   11篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  2001年   5篇
  2000年   4篇
  1999年   7篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   5篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1984年   2篇
  1983年   1篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有182条查询结果,搜索用时 15 毫秒
101.

Background  

Climate variability modifies both oceanic and terrestrial surface CO2 flux. Using observed/assimilated data sets, earlier studies have shown that tropical oceanic climate variability has strong impacts on the land surface temperature and soil moisture, and that there is a negative correlation between the oceanic and terrestrial CO2 fluxes. However, these data sets only cover less than the most recent 20 years and are insufficient for identifying decadal and longer periodic variabilities. To investigate possible impacts of interannual to interdecadal climate variability on CO2 flux exchange, the last 125 years of an earth system model (ESM) control run are examined.  相似文献   
102.
We present relative sea level (RSL) curves in Antarctica derived from glacial isostatic adjustment (GIA)predictions based on the melting scenarios of the Antarctic ice sheet since the Last Glacial Maximum (LGM)given in previous works.Simultaneously,Holocene-age RSL observations obtained at the raised beaches along the coast of Antarctica are shown to be in agreement with the GIA predictions.The differences from previously published ice-loading models regarding the spatial distribution and total mass change of the melted ice are significant.These models were also derived from GIA modelling; the variations can be attributed to the lack of geological and geographical evidence regarding the history of crustal movement due to ice sheet evolution.Next,we summarise the previously published ice load models and demonstrate the RSL curves based on combinations of different ice and earth models.The RSL curves calculated by GIA models indicate that the model dependence of both the ice and earth models is significantly large at several sites where RSL observations were obtained.In particular,GIA predictions based on the thin lithospheric thickness show the spatial distributions that are dependent on the melted ice thickness at each sites.These characteristics result from the short-wavelength deformation of the Earth.However,our predictions strongly suggest that it is possible to find the average ice model despite the use of the different models of lithospheric thickness.By sea level and crustal movement observations,we can deduce the geometry of the post-LGM ice sheets in detail and remove the GIA contribution from the crustal deformation and gravity change observed by space geodetic techniques,such as GPS and GRACE,for the estimation of the Antarctic ice mass change associated with recent global warming.  相似文献   
103.
We present precise geodetic and satellite observation-based estimations of the erupted volume and discharge rate of magma during the 2011 eruptions of Kirishima-Shinmoe-dake volcano, Japan. During these events, the type and intensity of eruption drastically changed within a week, with three major sub-Plinian eruptions on January 26 and 27, and a continuous lava extrusion from January 29 to 31. In response to each eruptive event, borehole-type tiltmeters detected deflation of a magma chamber caused by migration of magma to the surface. These measurements enabled us to estimate the geodetic volume change in the magma chamber caused by each eruptive event. Erupted volumes and discharge rates were constrained during lava extrusion using synthetic aperture radar satellite imaging of lava accumulation inside the summit crater. Combining the geodetic volume change and the volume of lava extrusion enabled the determination of the erupted volume and discharge rate during each sub-Plinian event. These precise estimates provide important information about magma storage conditions in magma chambers and eruption column dynamics, and indicate that the Shinmoe-dake eruptions occurred in a critical state between explosive and effusive eruption.  相似文献   
104.
105.
106.
The spatiotemporal distribution of Cretaceous–Paleogene granitic rocks in southwestern Japan is investigated to understand the origin of the granitic batholith belt and to reconstruct the tectonic setting of emplacement. New U–Pb zircon ages for 92 samples collected from a region measuring 50 km (E–W) by 200 km (N–S) reveals a stepwise northward younging of granitic rocks aged between 95 and 30 Ma with an age‐data gap between 60 and 48 Ma. Based on the spatiotemporal distribution of granite ages, we examine two plausible models to explain the pattern of magmatic activity: (i) subduction of a segmented spreading ridge and subsequent slab melting (ridge‐subduction model), and (ii) subduction with a temporally variable subduction angle and corresponding spatial distribution of normal arc magmatism (subduction angle model). We optimize the model parameters to fit the observed magmatism in time and space, and compare the best‐fit models. As to ridge subduction model, the best‐fit solution indicates that the spreading ridge started to subduct at approximately 100 Ma, and involved a 45‐km‐wide section of the ridge segment, a subduction obliquity of 30°, and a slow migration velocity (~1.6 cm/y) of the ridge. These values are within the ranges of velocities observed for present‐day ridge subduction at the Chile trench. On the other hand, the best‐fit solution of subduction angle model indicates that the subduction angle decreases stepwise from 37° at 95 Ma, 32° at 87 Ma, 22° at 72 Ma, to 20° at 65 Ma, shifting magmatic region towards the continental side. These results and comparison, together with constraints on the geometry of the tectonic setting provided by previous studies, suggest that the ridge subduction model better explains the limited duration of magmatism, although both models broadly fit the data and cannot be ruled out.  相似文献   
107.
A prograde pressure–temperature (P–T) path is estimated for pelitic schists from the latest Precambrian Kokchetav ultrahigh-pressure massif, Kazakhstan, using compositional zoning and mineral inclusions in coarse-grained and inclusion-rich garnets. Ti-bearing inclusions are abundant in garnet and display a zonal distribution. Ilmenite occurs in the inner-core, where most of it makes a composite inclusion with rutile, whereas monomineralic rutile occurs in the outer-core to mantle domains. In the rim region both ilmenite and rutile are present, although in small amounts. Application of the ilmenite-garnet thermometer yields a systematic temperature increase towards rim from 500 to 750 °C. The pressure-sensitive reaction: 3 Fe-Ilm (in Ilm) + Ky + 2 Qtz = 3 Rt + Alm (in Grt) yielded pressures of 1.2–1.3 GPa for the outer-core inclusions.A petrogenetic grid in the K2O–CaO–FeO–MgO–Al2O3–SiO2–H2O model system was used to estimate the equilibrium compositions of the garnet. The change of the grossular component along the model P–T path expected from the forward modelling is close to the observed compositional profile of the outer-core to rim domains. No constraint is available from thermobarometry in the inner-core; however, the forward modelling of garnet zoning provides information on the early stage of the P–T path during the garnet growth.The estimated P–T path is counter-clockwise in the prograde stage with a steep bend at around 700 °C and 1.2–1.5 GPa. This is similar to the metamorphic P–T gradient of the Kokchetav massif. This result contrasts markedly with the traditional clockwise P–T path in many collisional metamorphic terranes, and is regarded to represent a subduction geotherm at the Precambrian–Cambrian boundary. The P–T path proposed in this study also supports the models for the recovery of the “snowball Earth” from late-Proterozoic glaciation through effect of water in the solid Earth mantle.  相似文献   
108.
Groundwater microtemperature and strain   总被引:1,自引:0,他引:1  
  相似文献   
109.
Pyrometasomatic lead-zinc ore deposits of the Kamioka mine occur in the Hida metamorphic complex of central Japan. The pyrometasomatic ore deposition was followed by small scale hydrothermal ore deposition. Flaky graphite characteristically occurs in skarn, ores and in the surrounding crystalline limestone. 13C values of graphite in the skarn and the ores are close to those of graphites in the crystalline limestone. Graphite in the skarn and ores is considered to be remains of graphite in the crystalline limestone which was replaced by the skarn and the ores. At the pyrometasomatic stage, the oxygen fugacity of fluid would control the carbon isotopic composition of calcite precipitated. On the assumption that graphite played a role of oxygen buffer, the oxygen fugacity of the fluid was estimated to be from 10–31,4 to 10–301 bars at 350 °C and total pressure of 1,000 bars. The predominant carbon species in the fluid would be carbon dioxide. The 13C value of total carbon in fluid was estimated to be –3.6±1.7 (PDB) for the Tochibora and Maruyama deposits of the Kamioka mine, and the oxygen fugacity in the fluid was probably constant during the pyrometasomatic stage. It is likely that an important source of carbon was the carbon remained after the decarbonation of crystalline limestone. Oxygen isotopic studies on calcite of pyrometasomatic and hydrothermal stages revealed that meteoric water was an important source for most of the oxygen in fluid of both stages.  相似文献   
110.
Using data for one year, we examined the vertical wind speed profileson a mountain slope covered with forest in northern Thailand undera tropical monsoon climate. We defined two profile patterns: higherwind speeds at greater heights (Pattern 1) and lower wind speeds atgreater heights (Pattern 2). We classified 9.4% of the data as Pattern 2;this pattern tended to occur during the night, at low wind speeds, and with high outgoing longwave radiation. In addition, stable stratification anddecoupling between the canopy surface air and the overlying layers wereobserved when Pattern 2 occurred frequently. These facts suggested thatPattern 2 was caused by a nocturnal drainage flow. The occurrence ofPattern 2 showed a clear seasonal trend, indicating that there is a seasonaltrend in the occurrence of nocturnal drainage flows. Pattern 2 was observedmore frequently between August and February and less frequently betweenMarch and July. This corresponded to the seasonal trend in wind speed, butdid not correspond to the seasonal trend in the outgoing longwave radiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号