首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   367篇
  免费   14篇
  国内免费   7篇
测绘学   3篇
大气科学   10篇
地球物理   69篇
地质学   121篇
海洋学   74篇
天文学   86篇
综合类   6篇
自然地理   19篇
  2024年   2篇
  2022年   2篇
  2021年   6篇
  2019年   5篇
  2018年   6篇
  2017年   4篇
  2016年   11篇
  2015年   11篇
  2014年   15篇
  2013年   16篇
  2012年   7篇
  2011年   13篇
  2010年   7篇
  2009年   13篇
  2008年   14篇
  2007年   15篇
  2006年   25篇
  2005年   26篇
  2004年   22篇
  2003年   29篇
  2002年   7篇
  2001年   23篇
  2000年   17篇
  1999年   14篇
  1998年   8篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1993年   4篇
  1992年   4篇
  1990年   3篇
  1989年   5篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1975年   2篇
  1971年   2篇
  1970年   2篇
  1966年   1篇
  1965年   2篇
  1964年   1篇
  1963年   1篇
  1962年   1篇
排序方式: 共有388条查询结果,搜索用时 31 毫秒
161.
162.
The Mugling–Narayanghat road section falls within the Lesser Himalaya and Siwalik zones of Central Nepal Himalaya and is highly deformed by the presence of numerous faults and folds. Over the years, this road section and its surrounding area have experienced repeated landslide activities. For that reason, landslide susceptibility zonation is essential for roadside slope disaster management and for planning further development activities. The main goal of this study was to investigate the application of the frequency ratio (FR), statistical index (SI), and weights-of-evidence (WoE) approaches for landslide susceptibility mapping of this road section and its surrounding area. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. A landslide inventory map was prepared using earlier reports, aerial photographs interpretation, and multiple field surveys. A total of 438 landslide locations were detected. Out these, 295 (67 %) landslides were randomly selected as training data for the modeling using FR, SI, and WoE models and the remaining 143 (33 %) were used for the validation purposes. The landslide conditioning factors considered for the study area are slope gradient, slope aspect, plan curvature, altitude, stream power index, topographic wetness index, lithology, land use, distance from faults, distance from rivers, and distance from highway. The results were validated using area under the curve (AUC) analysis. From the analysis, it is seen that the FR model with a success rate of 76.8 % and predictive accuracy of 75.4 % performs better than WoE (success rate, 75.6 %; predictive accuracy, 74.9 %) and SI (success rate, 75.5 %; predictive accuracy, 74.6 %) models. Overall, all the models showed almost similar results. The resultant susceptibility maps can be useful for general land use planning.  相似文献   
163.
A morphometric investigation of the longitudinal distribution of hummocks at the southeastern foot of Iriga volcano in the Philippines showed that hummock size decreases away from the volcano. Aerial photographs and GIS analysis revealed that the size–distance relationship can be expressed as the exponential function A?=?α exp (?β D), where A is the area of a hummock and D is its distance from the source. This relationship is the same as that observed previously for freely spreading debris avalanches in Japan, including two avalanches at Bandai volcano. This size–distance relationship provides information about the physical characteristics of the event: the α value shows a strong correlation with the volume of the collapsed mass of the volcanic edifice, and the β value shows a strong correlation with the coefficient of friction of the debris avalanche. Thus, morphometric analysis of hummocks created by a volcanic avalanche illuminates both the physical properties of the volcanic body and the mobility of the avalanche. For the Iriga debris avalanche, the observed longitudinal hummock distribution is clearly a function of the volume of the collapsed mass and the coefficient of friction of the avalanche. The relationships so defined appear to be a geometric effect related to the areal extent of freely spreading hummocky avalanche deposits, especially their longitudinal dimensions.  相似文献   
164.
165.
166.
167.
168.
In mean-field dynamo theory, the electromotive force term 〈u′ × B′〉 due to small-scale fields connects the small-scale magnetic field with the large-scale field. This term is usually approximated as the α-effect, assumed to be instantaneous in time and local in space. However, the approximation is valid only when the magnetic Reynolds number Rm is much less than unity, and is inappropriate when Rm ? 1, which is the condition satisfied in the Earth's core or solar convection zone. We introduce a function φ qr as a non-local and non-instantaneous generalization of the usual α-effect and examine its behaviour as a function of Rm in the range 1/64 ≤ Rm ≤ 10 for a kinematic dynamo model. We use the flow of G.O. Roberts 1972 Roberts, GO. 1972. Dynamo action of fluid motions with two-dimensional periodicity. Phil. Trans. Roy. Soc. London Ser. A, 271: 411454. [Crossref], [Web of Science ®] [Google Scholar] (Phil, Trans. Roy. Soc. London Ser. A, 1972, 271, 411–454), which is steady and has non-zero helicities and two-dimensional periodicity. As a result, we identify three regions in Rm space according to the behaviour of the function φ qr : (i) Rm ? 1/4, where the function φ qr is local and instantaneous and can be approximated by the traditional α and β effects, (ii) 1/4 ? Rm ? 4, where the deviation from the traditional α and β effects increases and non-localness and non-instantaneousness increase, and (iii) Rm ? 4, where boundary layers develop fully and non-localness and non-instantaneousness are prominent. We show that the non-local memory effect for Rm ? 4 strongly affects the dynamo action and explains an observed augmentation of the growth rate in the dispersion relation. The results imply that the non-local memory effect of the electromotive force should be important in the geodynamo or the solar dynamo.  相似文献   
169.
A next-generation drilling system, equipped with a thermal drilling device, is proposed for glacier ice. The system is designed to penetrate glacier ice via melting of the ice and continuously analyze melt-water in a contamination-free sonde. This new type of drilling system is expected to provide analysis data in less time and at less cost than existing systems. Because of the limited number of parameters that can be measured, the proposed system will not take the place of conventional drilling systems that are used to obtain ice cores; however, it will provide a useful method for quickly and simply investigating glacier ice.An electro-thermal drilling device is one of the most important elements needed to develop the proposed system. To estimate the thermal supply required to reach a target depth in a reasonable time, laboratory experiments were conducted using ice blocks and a small sonde equipped solely with heaters. Thermal calculations were then performed under a limited range of conditions. The experiments were undertaken to investigate the effects of the shape and material of the drill head and heater temperature on the rate of penetration into the ice. Additional thermal calculations were then performed based on the experimental results.According to the simple thermal calculations, if the thermal loss that occurs while heat is transferred from the heater to ice (in melting the ice) is assumed to be 50%, the total thermal supply required for heaters in the sonde and cable is as follows: (i) 4.8 kW (sonde) plus 0 W (cable) to penetrate to 300 m depth over 10 days into temperate glacier ice for which the temperature is 0 °C at all depths and to maintain a water layer along 300 m of cable; (ii) 10 kW (sonde) plus 19–32 kW (cable) to penetrate to 1000 m depth over 1 month into cold glacier ice for which the temperature is −25 °C at the surface and 0 °C at 1000 m depth and to maintain a water layer along 1000 m of cable; and (iii) 19 kW (sonde) plus 140–235 kW (cable) to penetrate to 3000 m depth over 2 months into an ice sheet for which the temperature is −55 °C at the surface and 0 °C at 3000 m depth and to maintain a water layer along 3000 m of cable. The thermal supply required for the cable is strongly affected by the thickness of the water layer, cable diameter, and the horizontal distance from the ice wall at which the ice temperature was maintained at its initial temperature. A large thermal supply is required to heat 3000 m of cable in an ice sheet (scenario (iii) above), but penetration into glacier ice (scenarios (i) and (ii) above) could be realistic with the use of a currently employed generator.  相似文献   
170.
Interpretation of the GRACE-derived mass trend in Enderby Land, Antarctica   总被引:2,自引:1,他引:1  
Monthly gravity solutions of the Gravity Recovery and Climate Experiment (GRACE) reveal three areas in Antarctica with striking interannual mass trends. The positive mass trend in Enderby Land, East Antarctica, is poorly understood because of uncertainties in the surface ice-sheet mass balance, post-glacial rebound (PGR), and processing of GRACE data. In this study, we compare the GRACE mass trends with values estimated from in situ snow-stake measurements, and Ice Cloud and land Elevation Satellite (ICESat) data. The mass trends estimated from ICESat data show a strong correlation with GRACE mass trends. In contrast, the snow-stake data show discrepancies with temporal variations in GRACE mass, especially in 2006. The discrepancies are probably associated with basal ice-sheet outflow, which is difficult to observe using snow stakes. We conclude that the bulk of the GRACE mass trend can be explained by snow accumulation and basal ice-sheet outflow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号